Patents Examined by S. Camilla Pourbohloul
  • Patent number: 8801936
    Abstract: The invention relates to a process for separating a dispersed phase from a continuous phase comprising the steps of i) contacting said phases with an effective amount of nanoparticles; ii) applying a magnetic field gradient to the obtained system; iii) separating the obtained phases wherein said nanoparticles are of the core shell type, said core consists of a metal or alloy having soft magnetic properties and said shell contains a graphene layers which are optionally functionalized; to new nanoparticles and method of manufacturing such nanoparticles.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: August 12, 2014
    Assignee: ETH Zürich
    Inventors: Robert N. Grass, Wendelin Jan Stark
  • Patent number: 8796381
    Abstract: Encapsulated cure systems are provided wherein a curative is incorporated into a solid or semi-solid carrier material whereby mere fracturing or failure of the capsule wall encapsulating such cure systems will not provide for or allow sufficient release of the curative. Also provided are adhesive systems incorporating said encapsulated cure systems.
    Type: Grant
    Filed: September 17, 2011
    Date of Patent: August 5, 2014
    Assignee: Appvion, Inc.
    Inventors: Todd Arlin Schwantes, Michael Curley Krzoska, Gregory Stephen Kulibert, Adam Gregg Malofsky, Bernard Miles Malofsky, Nagib Maurice Ward
  • Patent number: 8792318
    Abstract: An approach is presented for designing a polymeric layer for nanometer scale thermo-mechanical storage devices. Cross-linked polyimide oligomers are used as the recording layers in atomic force data storage device, giving significantly improved performance when compared to previously reported cross-linked and linear polymers. The cross-linking of the polyimide oligomers may be tuned to match thermal and force parameters required in read-write-erase cycles. Additionally, the cross-linked polyimide oligomers are suitable for use in nano-scale imaging.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: July 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: Urs T. Duerig, Jane Elizabeth Frommer, Bernd Walter Gotsmann, Erik Christopher Hagberg, James Lupton Hedrick, Armin W. Knoll, Victor Yee-Way Lee, Teddie Peregrino Magbitang, Robert Dennis Miller, Russell Clayton Pratt, Charles Gordon Wade, Johannes Windeln
  • Patent number: 8765967
    Abstract: The invention provides a process for producing microcapsules with UV filter activity, wherein at least one type of crosslinkable chromophore with UV-A and/or UV-B and/or UV-C filter activity and optionally at least one type of crosslinkable monomer which does not have UV-A and/or UV-B and/or UV-C filter activity are subjected to a crosslinking reaction in the absence of non-crosslinkable chromophores with UV-A and/or UV-B and/or UV-C filter activity and microcapsules obtainable by this process.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: July 1, 2014
    Assignee: DSM IP Assets B.V.
    Inventor: Katja Berg-Schultz
  • Patent number: 8754141
    Abstract: A method that produces heat-expandable microspheres includes the use of a shell of thermoplastic resin and a non-fluorine blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin. The method includes a step of dispersing an oily mixture containing a polymerizable component, the blowing agent, and a polymerization initiator containing a peroxydicarbonate in an aqueous dispersing medium to polymerize the polymerizable component contained in the oily mixture. The resultant heat-expandable microspheres have a shell which is less apt to become thinner than its theoretical value, contain minimum amount of resin particle inside their shell, and have excellent heat-expanding performance.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: June 17, 2014
    Assignee: Matsumoto Yushi-Seiyaku Co., Ltd.
    Inventors: Toshiaki Masuda, Kenichi Kitano, Katsushi Miki, Takeshi Inohara, Takayuki Aoki
  • Patent number: 8741192
    Abstract: A method and an apparatus for producing various types of microdroplets. The apparatus has a cross intersection portion at which a first continuous phase, a first dispersion phase, and a second dispersion phase intersect with each other. A first liquid feed device controls the first dispersion phase and a second liquid feed device controls the second dispersion phase. A control device is connected to the first liquid feed device and the second liquid feed device. The first liquid feed device and the second liquid feed device are controlled by a signal from the control device so that microdroplets formed of the first dispersion phase and microdroplets formed of the second dispersion phase are sequentially produced.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: June 3, 2014
    Assignee: Japan Science and Technology Agency
    Inventors: Toru Torii, Toshiro Higuchi, Takashi Nishisako, Shingo Okushima
  • Patent number: 8721935
    Abstract: The essence of the invention is that an aqueous medium is mixed with a lipid component (lipid solution in an organic solvent) by the ejecting introduction (suction) of the lipid component (lipid solution in an organic solvent) into an ejector mixing chamber in the form of a de Laval nozzle by means of the energy from a pressurized jet of the aqueous medium flowing out of the inlet nozzle of the ejector, which jet creates a pressure drop in the convergent part (confuser) of the mixing chamber, wherein an aerosol stream of liposome is formed at the outlet of the divergent part (diffuser) of the mixing chamber.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: May 13, 2014
    Inventor: Evgeny P. Grebennikov
  • Patent number: 8722838
    Abstract: Surface-modified, structurally modified fumed silicas Surface-modified, structurally modified fumed silicas are surface-modified with N-containing silicon compounds. They are used as fillers in resins and adhesives.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: May 13, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Mario Scholz, Juergen Meyer
  • Patent number: 8715544
    Abstract: A process of forming a population of microcapsules is described comprising a liquid hydrophilic core material and a wall material at least partially surrounding the core material. The liquid hydrophilic core material can be anionic, cationic, or neutral but polar. The microcapsule population is formed by providing liquid hydrophilic core material; providing an oil continuous phase which is low boiling and preferably nonflammable, the oil continuous phase comprising preferably one or more organic oil materials such as esters with chain length up to about 42 carbons. A mixture is formed by dispersing the liquid hydrophilic material in the oil continuous phase. Either an oil soluble or dispersible monofunctional amine acrylate or monofunctional amine methacrylate, along with acid; or alternatively monofunctional acid acrylate or monofunctional acid methacrylate along with base; or alternatively, monofunctional amine acrylate or monofunctional amine methacrylate along with acid acrylate or methacrylate; is added.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: May 6, 2014
    Assignee: Appvion, Inc.
    Inventor: Todd Arlin Schwantes
  • Patent number: 8709598
    Abstract: A microcapsule comprising a core containing a hydrophobic liquid or wax and a polymeric shell formed from: i) 1 to 20% by weight of polymerizable silane compound, ii) 1 to 94% by weight of hydrophobic mono functional ethylenically unsaturated monomer, iii) 5 to 98% by weight of polyfunctional ethylenically unsaturated monomer, and iv) 0 to 60% by weight of other mono functional monomer(s), wherein components (i), (ii), (iii) and (iv) total 100%, and in which the microcapsule also includes a hydrophilic polymer which is covalently bonded to the microcapsule. The invention includes a process for the manufacture of particles and the use of particles in articles, such as fabrics, and coating compositions, especially for textiles.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: April 29, 2014
    Assignee: BASF SE
    Inventor: Bryan David Grey
  • Patent number: 8703843
    Abstract: The present disclosure relates to processes for preparing microparticles using a solvent extraction technique, including controlled addition and/or removal of the extraction phase.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: April 22, 2014
    Assignee: Evonik Corporation
    Inventors: Jeffrey L. Atkinson, Brian Keith Chambers
  • Patent number: 8703893
    Abstract: A polymeric dendrimer-like structure with four branches of monomethoxy-polyethylene glycol that can be represented as: The carboxylic group of the previous structure can be functionalized for the production of conjugates of pharmaceutical interest. The binding of this dendrimer-like polyethylene glycol to therapeutic proteins improves their in vitro and in vivo stability.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: April 22, 2014
    Assignee: Centro de Ingenienia Genetica y Biotecnologia
    Inventors: José Ángel Ramón Hernández, Fidel Raúl Castro Odio, Vivian-María Sáez Martinez, Rolando Páez Meircles, Eduardo Fernández Sánchez
  • Patent number: 8701879
    Abstract: A capsule-in-capsule system comprising at least two segregated chemical reactants is described. An inner capsule contains one reactant and is itself contained, with a second chemical reactant, in an outer capsule. The inner capsule and its contents is fabricated first; then it is incorporated into the second reactant; and the combination of the second reactant and inner capsule is encapsulated in the outer capsule. The reactants may be hydrophobic or hydrophilic and present as fluids, solids or combinations of solid(s) and fluids(s). When subjected to suitably high pressure, the capsule wall materials will fracture or rupture, releasing and preferably mixing all encapsulates to enable their prompt reaction. The utility of the invention is illustrated by its application to development of a corrosion inhibiting passive film on magnesium auto body material and to the adhesive bonding of members where precise positioning is desired.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: April 22, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Tao Xie, Anil K. Sachdev
  • Patent number: 8696952
    Abstract: The present invention provides a method and apparatus for producing polymeric particles with pre-designed size, shape, morphology and composition, and more particularly the present invention uses a microfluidic polymerization reactor for producing same. The present invention disclosed herein provides a process for producing polymer particles with pre-selected shapes. The method includes injecting a first fluid comprising a polymerizable constituent with a controlled flow rate into a microfluidic channel and injecting a second fluid with a controlled flow rate into the microfluidic channel in which the second fluid mixes with the first fluid, the second fluid being immiscible with the first fluid so that the first fluid forms into droplets in the microfluidic channel. The microfluidic channel has pre-selected dimensions to give droplets of pre-selected size, morphology and shape.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: April 15, 2014
    Inventors: Eugenia Kumacheva, Shengqing Xu, Zhihong Nie, Min Seok Seo, Patrick Cameron Lewis, Hong Zhang
  • Patent number: 8697233
    Abstract: A metal-coated material comprising a metal-coated lipid bilayer vesicle and a preparation method thereof are provided. A metal-coated material comprising a metal-coated lipid bilayer vesicle having a network of siloxane bonding (Si—O—Si) on its surface. a method for preparing the metal-coated lipid bilayer vesicle comprising the following steps: (1) rendering the functional group(s) having the ability of carrying the metal catalyst to the surface of lipid bilayer vesicle having a network of siloxane bonding (Si—O—Si bonding) on its surface, at or after the formation, by self-organization, of the lipid bilayer vesicle; (2) immobilizing the metal catalyst on the surface of the lipid bilayer vesicle; (3) optionally, reducing the metal catalyst; and (4) performing electroless plating.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: April 15, 2014
    Assignees: Nara Institute of Science and Technology, JX Nippon Mining & Metals Corporation
    Inventors: Jun-ichi Kikuchi, Yoshihiro Sasaki, Mineo Hashizume, Toru Imori
  • Patent number: 8691383
    Abstract: A blunt impact indicator tape includes a tape strip, a plurality of rupture-able fluid microspheres carried by the tape strip and a colored indicator fluid in each of the plurality of fluid microspheres.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: April 8, 2014
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, William Joseph Tapia
  • Patent number: 8685283
    Abstract: Micelle-templated superficially porous particles having a solid core and an outer porous shell with ordered pore structures and a narrow particle size distribution, such as about ±5% (one sigma), and a high specific surface area of about 5 to about 1000 m2/g.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: April 1, 2014
    Assignee: Agilent Technologies, Inc.
    Inventors: Ta-Chen Wei, Wu Chen, William E. Barber
  • Patent number: 8679629
    Abstract: A microcapsule comprising a core containing a hydrophobic liquid or wax within a polymeric shell, in which solid particles insoluble in the hydrophobic liquid or wax are distributed throughout the core, wherein an oil soluble dispersant polymer is adhered to the surface of the solid insoluble particles. Processes of obtaining the microcapsules and dispersions of microcapsules in a liquid are claimed. The microcapsules can be used in a variety of applications particularly in the field of thermal energy storage. Suitably the microcapsules can be designed to have a particular density and can be used in the transfer fluids where the density of the microcapsules are the same as the carrier fluid.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: March 25, 2014
    Assignee: BASF SE
    Inventors: Chun-tian Zhao, Kishor Mistry, Bryan David Grey
  • Patent number: 8674005
    Abstract: An object of the present invention is to provide a flame retardant resin composition including magnesium hydroxide particles and a cellulose resin and having excellent flame retardance, mechanical characteristics, and moldability. The flame retardant resin composition includes a thermoplastic resin including a cellulose resin and a flame retardant. The flame retardant includes, at 40% by weight to 60% by weight of the total flame retardant, a first type of magnesium hydroxide particles with a particle diameter of 10 nm to 50 nm, having a particulate surface modified by an epoxy silane coupling agent, and, at 60% by weight to 40% by weight of the total flame retardant, a second type of magnesium hydroxide particles with a particle diameter of 100 nm to 1,000 nm, having a particulate surface modified by an amino silane coupling agent.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: March 18, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Makoto Koike, Yasunori Ichikawa, Yoshiyuki Miyoshi
  • Patent number: 8669354
    Abstract: Method for removal of endotoxin from protein preparations using core-shell nanoparticles, which have the ability to selectively adsorb endotoxin molecules in a protein mixture. The method comprises the steps of (a) preparing a plurality of core-shell nanoparticles; (b) adding the core-shell nanoparticles into a protein preparation containing endotoxin; (c) incubating the core-shell nanoparticles with the protein preparation for a period of time; and (d) separating nanoparticles from the protein preparation.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: March 11, 2014
    Assignee: The Hong Kong Polytechnic University
    Inventors: Pei Li, Kin Man Ho