Patents Examined by S. H. Rao
  • Patent number: 6187642
    Abstract: The inventive method provides improved semiconductor devices, such as MOSFET's with raised source/drain extensions on a substrate with isolation trenches etched into the surface of the substrate. The inventive method provides thin first dielectric spacers on the side of a gate and gate oxide and extend from the top of the gate to the surface of the substrate. Raised source/drain extensions are placed on the surface of a substrate, which extend from the first dielectric spacers to the isolation trenches. Thicker second dielectric spacers are placed adjacent to the first dielectric spacers and extend from the top of the first dielectric spacers to the raised source/drain extensions. Raised source/drain regions are placed on the raised source/drain extensions, and extend from the isolation trenches to the second dielectric spacers. The inventive semiconductor devices provide for very shallow source drain extensions which results in a reduced short channel effect.
    Type: Grant
    Filed: June 15, 1999
    Date of Patent: February 13, 2001
    Assignee: Advanced Micro Devices Inc.
    Inventors: Bin Yu, Judy Xilin An
  • Patent number: 6180441
    Abstract: A field effect transistor is formed across a one or more trenches (26) or bars (120), thereby increasing the effective width of the channel region and the current-carrying capacity of the device.
    Type: Grant
    Filed: May 10, 1999
    Date of Patent: January 30, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: John T. Yue, Matthew S. Buynoski, Yowjuang W. Liu, Peng Fang
  • Patent number: 6177299
    Abstract: A method for forming a field effect transistor (FET) is disclosed which includes forming an isolation region in a substrate of semiconductor material, anisotropically etching the substrate such that a sidewall spacer region of semiconductor material remains on a sidewall of the isolation region as a device region of the FET. The isolation region may then be recessed such that, after gate conductor deposition, the central channel region of the device region is enclosed by the gate conductor. A dopant concentration in at least one of the central portion of the device region or regions flanking the central portion are then altered to form source-drain regions having a first dopant type and a channel region having a second dopant type opposite the first dopant type.
    Type: Grant
    Filed: January 15, 1998
    Date of Patent: January 23, 2001
    Assignee: International Business Machines Corporation
    Inventors: Louis Lu-chen Hsu, Jack Allan Mandelman
  • Patent number: 6171965
    Abstract: A method for treating a film of material, which can be defined on a substrate, e.g., silicon. The method includes providing a substrate comprising a cleaved surface, which is characterized by a predetermined surface roughness value. The substrate also has a distribution of hydrogen bearing particles defined from the cleaved surface to a region underlying said cleaved surface. The method also includes increasing a temperature of the cleaved surface to greater than about 1,000 Degrees Celsius while maintaining the cleaved surface in a etchant bearing environment to reduce the predetermined surface roughness value by about fifty percent and greater. Preferably, the value can be reduced by about eighty or ninety percent and greater, depending upon the embodiment.
    Type: Grant
    Filed: April 21, 1999
    Date of Patent: January 9, 2001
    Assignee: Silicon Genesis Corporation
    Inventors: Sien G. Kang, Igor J. Malik
  • Patent number: 6153490
    Abstract: A method for etching a feature in a platinum layer 834 overlying a second material 818 without substantially etching the second material. The method includes the the steps of: forming an adhesion-promoting layer 824 between the platinum layer and the second material; forming a hardmask layer 829 over the platinum layer; patterning and etching the hardmask layer in accordance with desired dimensions of the feature; and etching portions of the platinum layer not covered by the hardmask layer 832, the etching stopping on the adhesion-promoting layer. In further embodiments the adhesion-promoting and hardmask layers are Ti--Al--N including at least 1% of aluminum.
    Type: Grant
    Filed: June 26, 1998
    Date of Patent: November 28, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Guoqiang Xing, Scott R. Summerfelt, Rajesh Khamankar
  • Patent number: 6150693
    Abstract: A field effect transistor (FET) with a V-shaped trench gate in a semiconductor substrate having gate oxide on the walls of the trench and a gate electrode material within the trench walls, and source/drain impurities in the semiconductor substrate and abutting the gate oxide. The resultant FET structure comprises a non-self align V-shaped gate with an effective channel length (L.sub.eff) of less than about one-half of the surface width of the gate. Because of the V-shaped structure of the gate, the effective length of the channel only extends from the edge of the source to the tip of the V-shaped gate. Due to this characteristic, the width of the gate at the surface of the semiconductor substrate can be two or more time the distance of the desired channel length thereby permitting conventional lithography to be used to fabricate gate lengths much shorter than the lithography limit. Preferably, the bottom or tip of the V shaped gate is rounded and concave.
    Type: Grant
    Filed: May 12, 1998
    Date of Patent: November 21, 2000
    Assignee: Advanced Micro Devices
    Inventor: Donald L. Wollesen
  • Patent number: 6146934
    Abstract: A PMOS or CMOS device includes an active region with a shallow heavy atom p-type implant. The PMOS device has a substrate, at least one gate electrode disposed on the substrate, and first and second doped active regions disposed adjacent to the gate electrode. The first active region has a higher concentration of a p-type heavy atom dopant material than the second active region. In one method of forming the PMOS device, spacers are formed on sidewalls of the gate electrode. A first p-type dopant material is selectively implanted into active regions adjacent to the gate electrode using the spacers as a mask. Then a portion of one of the spacers is removed to form a thinner spacer and a second p-type dopant material is selectively implanted into a first one of the active regions using the thinner spacer as a mask. The second p-type dopant material is a heavy atom species.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: November 14, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark I. Gardner, H. Jim Fulford, Jack C. Lee
  • Patent number: 6146978
    Abstract: An interlevel interconnect is formed in a window opened through an isolation layer and through an etch barrier to expose an electrode surface and an adjacent isolation barrier. The interlevel interconnect may be disposed on substantially all of a portion of the underlying electrode such as an insulated gate field effect transistor (IGFET) source/drain region surface. The etch barrier provides controlled etching to allow for overlap of the interlevel interconnect onto the isolation barrier without increased parasitic capacitance relative to conventional contact misalignments. Furthermore, allaying concerns of overlapping allows for increased utilization of source/drain region surface area by the interlevel interconnect. Furthermore, the etch barrier allows the interlevel interconnect to strap electrodes of a plurality of circuit devices while exhibiting nominal if any substrate to interlevel interconnect leakage currents.
    Type: Grant
    Filed: May 6, 1998
    Date of Patent: November 14, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark W. Michael, Robert Dawson, H. Jim Fulford, Jr., Mark I. Gardner, Frederick N. Hause, Bradley T. Moore, Derick J. Wristers
  • Patent number: 6136634
    Abstract: A high-resistance polycrystalline Si resistor having a stable resistance value even when micro-sized and a low-resistance polycrystalline Si resistor having a sufficiently low desired resistance value wherein a polycrystalline Si film is formed on an insulation film located on a Si substrate, high-resistance-making ion implantation is applied to the entire surface and medium-resistance-making ion implantation is selectively applied to a medium-resistance-making region of the polycrystalline Si film. Low-resistance-making ion implantation is selectively applied to a low-resistance-making region of the polycrystalline Si film. The product is annealed to grow the polycrystalline Si film by solid-phase growth, the film is patterned to form a high-resistance polycrystalline Si resistor, medium-resistance polycrystalline Si resistor, and low-resistance polycrystalline Si resistor.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: October 24, 2000
    Assignee: Sony Corporation
    Inventors: Katsuyuki Kato, Hiroyuki Miwa, Hiroaki Ammo
  • Patent number: 6096586
    Abstract: There is provided a MOS device with self-compensating threshold implant regions and a method of manufacturing the same which includes a semiconductor substrate, a partial first threshold implant forming a higher concentration layer, a gate oxide formed on the surface of the higher concentration layer, and a gate formed on a surface of the gate oxide. The MOS device further includes a second threshold implant for forming self-compensating implant regions in the substrate which is subsequently heated to define pockets. A third implant is performed to create lightly-doped source/drain regions. A sidewall spacer is formed on each side of the gate. A fourth implant is performed to create highly-doped source/drain regions between the lightly-doped source/drain regions and the pockets.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: August 1, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ognjen Milic-Strkalj, Geoffrey Choh-Fei Yeap
  • Patent number: 6060761
    Abstract: A lateral transistor includes a semiconductor substrate of a first conductivity type having a major surface; an emitter region of a second conductivity type in the semiconductor substrate on the major surface of the semiconductor substrate; a collector region of a second conductivity type in the semiconductor substrate on the major surface of the semiconductor substrate, spaced from and surrounding the emitter region, and including sides and corners; an electrically insulating layer on the major surface of the semiconductor substrate and including a first penetrating hole extending to the collector region except at a first of the corners and a second penetrating hole extending to the emitter region; a collector electrode contacting the collector region through the first penetrating hole and surrounding the emitter region except at the first corner; an emitter electrode at the same level as the collector electrode and contacting the emitter region through the second penetrating hole; and an emitter wiring laye
    Type: Grant
    Filed: March 26, 1998
    Date of Patent: May 9, 2000
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Mitsubishi Electric Engineering Co., Ltd.
    Inventors: Keisuke Kawakita, Takahiro Yashita