Patents Examined by Sally Merkling
  • Patent number: 12020836
    Abstract: To provide an R-T-B based permanent magnet having a high residual magnetic flux density Br at room temperature and a high coercivity HcJ at high temperature. In the R-T-B based permanent magnet, R is a rare earth element, T is an iron group element, and B is boron, and the R-T-B based permanent magnet includes a light rare earth element and a heavy rare earth element as R. The R-T-B based permanent magnet further includes Al, Ga, and Zr. With respect to 100 mass % of the R-T-B based permanent magnet, a total content of R is 28.50 mass % to 30.25 mass % (not including 28.50 mass %), B content is 0.93 mass % to 0.98 mass %, Al content is 0.03 mass % to 0.19 mass %, Ga content is 0.03 mass % to 0.15 mass %, and Zr content is 0.30 mass % to 0.50 mass %.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: June 25, 2024
    Assignee: TDK CORPORATION
    Inventors: Koji Miura, Masashi Miwa
  • Patent number: 12012642
    Abstract: A method of selectively recovering palladium from a palladium-containing material comprises providing a leaching solution comprising hydrochloric acid, hydrogen peroxide, and an iron salt comprising one or both of ferric chloride or ferrous chloride and contacting a palladium-containing material with the leaching solution to dissolve palladium from the palladium-containing material. Related methods of selectively recovering palladium from a palladium-containing material are also disclosed.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: June 18, 2024
    Inventors: Tedd E. Lister, Luis A. Diaz Aldana
  • Patent number: 11994040
    Abstract: A method of forming a component includes mixing a powdered base material and a binder to define a mixture, forming the mixture into a desired shape without melting the base material, removing the binder from the desired shape to define a skeleton, the volume of the skeleton being between 80 percent and 95 percent base material, and infiltrating the skeleton with a melting point depressant material to define a finished component, the finished component having less than one percent porosity by volume.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: May 28, 2024
    Assignee: Siemens Energy, Inc.
    Inventors: Anand A. Kulkarni, Kazim Ozbaysal, Ahmed Kamel, Kyle I. Stoodt
  • Patent number: 11987860
    Abstract: A method for processing fines bearing iron or other metals, such as manganese, bauxite, boron, chromium, iron-nickel and/or ferrous slags, from various possible sources, possibly with the addition of self-reducing agents and other minerals for chemical adjustment, with particle size up to 6.3 mm (through ¼ inch sieve), directly into the intense mixer, with a set of binders in specific proportions, aiming to optimize physical and metallurgical properties of the briquettes with minimal binder addition, thus not compromising the quality of steel or other metal products. The binders are starch, sodium silicate and a base such as sodium hydroxide. The mixture with adjusted moisture content goes through a conventional briquetting roller press. The green briquettes then undergo drying with forced air at around 150° C. for a short time, or at ambient temperature for a longer time.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: May 21, 2024
    Inventor: Sidney Nicodemos da Silva
  • Patent number: 11969787
    Abstract: Aspects of the disclosure are directed to additively manufacturing a three-dimensional structure. As may be implemented in accordance with one or more embodiments, a plurality of stacked layers are deposited, and for one or more respective layers of the plurality of stacked layers, pores are formed within the layer by applying pulsed energy to the layer. The pulsed energy is used to create a space sealed within the layer and having an inner surface defined by material of the layer.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: April 30, 2024
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Lianyi Chen, S. Mohammad H Hojjatzadeh, Qilin Guo
  • Patent number: 11964326
    Abstract: A method for manufacturing an integrally formed bladed disk of a turbomachine, includes manufacturing a plurality of blades, the blades including a root and a profiled portion; and spark plasma sintering the blades with a metal powder, the blades being angularly distributed over a contour of an annular spark plasma sintering mold, the root of the blades being embedded into the metal powder, the profiled portion of the blades protruding from the metal powder radially outwardly.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: April 23, 2024
    Assignee: SAFRAN
    Inventor: Pierre Jean Sallot
  • Patent number: 11945033
    Abstract: A method is provided for the heat treatment of an object comprising at least one rare-earth element with a high vapor pressure. One or more objects comprising at least one rare-earth element with a high vapor pressure are arranged in an interior of a package. An external source of the at least one rare-earth element is arranged so as to compensate for the evaporation of this same rare-earth element from the object and/or to increase the vapor pressure of the rare-earth element in the interior of the package, and the package is heat treated.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: April 2, 2024
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventors: Kaan Üstüner, Matthias Katter, Christoph Brombacher, Daniela Benedikt
  • Patent number: 11946113
    Abstract: A method for producing a grain oriented electrical steel sheet includes a decarburization annealing process where an oxidation degree PH2O/PH2 is controlled, an annealing separator applying process where a mass ratio of MgO and Al2O3 in an annealing separator is controlled, a final annealing process where hydrogen in mixed gas atmosphere is controlled to 50 volume % or more, an annealing separator removing process where water-washing is conducted using solution with inhibitor, a smoothing process where chemical-polished is conducted to control average roughness Ra, and an insulation coating forming process where insulation coating forming solution in which crystalline phosphide is included is applied.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: April 2, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shinsuke Takatani, Yoshiyuki Ushigami
  • Patent number: 11946122
    Abstract: The present disclosure relates to a micron silver particle-reinforced 316L stainless steel matrix composite, including a 316L stainless steel matrix and silver particles uniformly distributed in the 316L stainless steel matrix. The silver particles have a weight 1% to 5% of the total weight of the composite; and the composite has a density of 7.9 g/cm3 to 8.2 g/cm3 and a relative density of more than 98%. The composite is prepared by the following method: mixing raw materials of a spherical silver powder and a spherical 316L stainless steel powder; subjecting a resulting mixture to mechanical ball milling to obtain a mixed powder; sieving the mixed powder and adding a resulting powder to a powder cylinder of an SLM forming machine; and charging an inert protective gas for printing to obtain the composite.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: April 2, 2024
    Assignee: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS
    Inventors: Dongdong Gu, Kaijie Lin, Jingfeng Quan, Yamei Fang, Qing Ge, Jie Zhuang, Yang Liu, Weisong Dong, Pengjiang Shuai
  • Patent number: 11938541
    Abstract: A method for manufacturing a wrought metallic article from metallic-powder compositions comprises steps of (1) compacting the metallic-powder composition to yield a compact, having a surface, a cross-sectional area, and a relative density of less than 100 percent, (2) reducing the cross-sectional area of the compact via an initial forming pass of a rotary incremental forming process so that the compact has a decreased cross-sectional area, and (3) reducing the decreased cross-sectional area of the compact via a subsequent forming pass of the rotary incremental forming process by a greater percentage than that, by which the cross-sectional area of the compact was reduced during the initial forming pass.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: March 26, 2024
    Assignee: The Boeing Company
    Inventors: Austin E. Mann, Ali Yousefiani, Joe Pecina
  • Patent number: 11920224
    Abstract: A magnet structure includes columnar grains of rare earth permanent magnet phase aligned in a same direction and arranged to form bulk anisotropic rare earth alloy magnet having a boundary defined by opposite ends of the columnar grains and lacking triple junction regions, and rare earth alloy diffused onto opposite ends of the bulk anisotropic rare earth alloy magnet.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: March 5, 2024
    Assignee: Ford Global Technologies, LLC
    Inventors: Wanfeng Li, Feng Liang, Michael W. Degner
  • Patent number: 11920210
    Abstract: A process for producing a solder product and a copper product from a first lead-tin based metal composition having at least 40% wt of copper and at least 5.0% wt together of tin and lead. The process includes the steps of partially oxidizing a first liquid bath having the first lead-tin based metal composition, thereby forming a first dilute copper metal composition and a first solder refining slag, followed by separating the slag from the metal composition, and partially oxidizing a second liquid bath having the first dilute copper metal composition, thereby forming a first high-copper metal composition and a third solder refining slag, followed by separating the third solder refining slag from the first high-copper metal composition, whereby the solder product is derived from the first solder refining slag.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: March 5, 2024
    Assignee: METALLO BELGIUM
    Inventors: Bert Coletti, Jan Dirk A. Goris, Yves De Visscher, Charles Geenen, Walter Guns, Niko Mollen, Steven Smets, Andy Breugelmans
  • Patent number: 11918973
    Abstract: Provided is a heavy metal adsorbent consisting of a zeolite with a median diameter on a volume basis of 10.0 ?m or more and a pore volume measured in a pore volume calculation range of 10 nm to 1000 nm by a mercury intrusion method of 0.1000 cm3/g or less.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: March 5, 2024
    Assignee: SINANEN ZEOMIC CO., LTD.
    Inventors: Naoyuki Inoue, Akio Taniguchi
  • Patent number: 11915861
    Abstract: There is provided a method for manufacturing a rare earth sintered magnet having a stable magnetic performance, by uniformly distributing a heavy rear earth element to the surface of the magnet and the grain boundary inside of the magnet by using a mixture of a heavy rare earth compound or a heavy rare earth metal alloy and a rare earth magnet powder, to lower a decrease rate of the magnetic characteristics based on the temperature of the rare earth sintered magnet.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: February 27, 2024
    Assignee: STAR GROUP IND. CO., LTD
    Inventors: Dong Hwan Kim, Koon Seung Kong
  • Patent number: 11913092
    Abstract: Morphology, microstructure, compressive behavior, and biocorrosive properties of magnesium or magnesium alloy foams allow for their use in biodegradable biomedical, metal-air battery electrode, hydrogen storage, and lightweight transportation applications. Magnesium or Mg alloy foams are usually very difficult to manufacture due to the strong oxidation layer around the metallic particles; however, in this invention, they can be synthesized via a camphene-based freeze-casting process with the addition of graphite powder using precisely controlled heat-treatment parameters. The average porosity ranges from 45 to 85 percent and the median pore diameter is about a few tens to hundreds of microns, which are suitable for bio and energy applications utilizing their enhanced surface area.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: February 27, 2024
    Assignee: CellMo Materials Innovation, Inc.
    Inventors: Kicheol Hong, Hyeji Park, Teakyung Um, Heeman Choe
  • Patent number: 11915844
    Abstract: A method of processing NdFeB magnetic powder comprises: providing a source of hydrogenated NdFeB powder (101, 102, 103); feeding said powder into an inlet of a cyclone separator (104); separating the powder into an overflow enriched in Nd-rich grain boundary phase and an underflow enriched in NdxFeyBHz matrix phase particles (106); optionally feeding the underflow back into the inlet of the cyclone separator whereby to further enrich the underflow in the NdxFeyBHz matrix phase particles (108a); and collecting the underflow (108).
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: February 27, 2024
    Assignee: The University of Birmingham
    Inventors: Allan Walton, Neil Rowson
  • Patent number: 11908726
    Abstract: This application relates to a method of manufacturing an electrostatic chuck having good characteristics in heat dissipation, thermal shock resistance, and lightness. In one aspect, the method includes preparing a composite powder by ball-milling (i) aluminum or aluminum alloy powder and (ii) carbon-based nanomaterial powder. The method may also include preparing an electrode layer by sintering the composite powder through spark plasma sintering (SPS), and forming a dielectric layer on the electrode layer.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: February 20, 2024
    Assignee: Pukyong National University Industry-University Cooperation Foundation
    Inventor: Hansang Kwon
  • Patent number: 11904390
    Abstract: This application relates to a method of manufacturing an electrostatic chuck having a high heat dissipation property and high thermal shock resistance and being lightweight, and an electrostatic chuck manufactured by the method. In one aspect, the method includes preparing a composite powder by milling (i) aluminum or aluminum alloy powder and (ii) carbon-based nanomaterial powder through ball milling. The method may also include manufacturing a multilayer billet including a core layer and one or more shell layers surrounding the core layer, in which at least one of the core and shell layers contains the composite powder. The method may further include extruding the multilayer billet to form an electrode layer and forming a dielectric layer on the electrode layer.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: February 20, 2024
    Assignee: Pukyong National University Industry-University Cooperation Foundation
    Inventor: Hansang Kwon
  • Patent number: 11901117
    Abstract: A method for manufacturing a powder magnetic core, the method including: forming a soft magnetic powder (SMP) layer by putting an SMP having a surface on which an insulating coating film is formed into a space surrounded by a lower punch and a die; forming a pressed powder by compressing the SMP layer in the die by the lower punch and an upper punch; and causing the pressed powder and the die to slide relative to each other and then removing the pressed powder from the die is provided. In forming the SMP layer, a different powder different from the SMP is put into the space before and after the SMP is put into the space and a different powder layer having a spring back rate higher than that of the SMP layer by 0.6-1.1% is formed on upper and lower sides of the SMP layer.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: February 13, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroto Nagaki, Kazumichi Nakatani, Kohei Ishii
  • Patent number: 11898217
    Abstract: A method for producing a steel plate member (SPM), including: a quenching step for heating the SPM to a temperature higher than an austenite transformation finish temperature A3 and subsequently cooling the SPM at a cooling rate (CR) faster than an upper critical CR; and a tempering step for reheating a second region of the SPM to a temperature higher than an austenite transformation start temperature A1 without reheating a first region of the SPM after quenching and subsequently cooling the SPM at a CR slower than a lower critical CR. In the cooling process of the tempering step, the shape of the second region is corrected in a temperature range from a temperature equal to or lower than A1 to a temperature equal to or higher than a temperature at which transformation into ferrite and pearlite is finished while maintaining the CR slower than the lower critical CR.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: February 13, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shoji Kawano, Shinya Yamamoto, Masatomo Niihara, Tomoaki Ihara