Patents Examined by Scott Hughes
  • Patent number: 7397728
    Abstract: An apparatus and method for processing a record of seismic traces. The method includes receiving the record of seismic traces in a time-offset domain, transforming the record of seismic traces to a tau-p domain, applying a zero offset inverse Q algorithm to the record of seismic traces in the tau-p domain, and transforming the record of seismic traces back to the time-offset domain.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: July 8, 2008
    Assignee: WesternGeco L.L.C.
    Inventor: Ian Moore
  • Patent number: 7391675
    Abstract: The present invention provides methods and systems for microseismic hydraulic fracture monitoring in real-time. The methods and systems of the present invention may include continuous map migration of recorded microseismic signals. The methods and systems provide robust automated simultaneous detection and location of microseismic events.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: June 24, 2008
    Assignee: Schlumberger Technology Corporation
    Inventor: Julian Drew
  • Patent number: 7388811
    Abstract: This invention is a method of separating induced microseismicity signals from seismic signals acquired within active seismic monitoring operations carried out in underground zones under development which has application for monitoring of underground hydrocarbon or fluid storage reservoirs. Seismic records are formed from signals emitted by one or more seismic sources controlled by orthogonal signals. In this case, the signals are processed to separate the respective contributions of the at least one seismic source to the signals received and to reconstruct the seismograms equivalent to those that would be obtained by actuating the at least one seismic source separately.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: June 17, 2008
    Assignees: Institute Francais du Petrole, Compagnie Generale de Geophysique, Gaz de France
    Inventors: Julien Meunier, Frédéric Huguet
  • Patent number: 7388808
    Abstract: A method is disclosed for depth migrating seismic data. The method includes pre-stack time migrating the seismic data to form a stacked, time migrated image. The stacked, time migrated image is demigrated, and post-stack depth migration is then performed on the demigrated image. In some embodiments, the pre-stack time migration and the demigration account for ray bending in vertically transversely isotropic media.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: June 17, 2008
    Assignee: PGS Americas, Inc.
    Inventors: Shu-Schung Lee, John Willis, Yeashung Lin
  • Patent number: 7382684
    Abstract: The method for exploring desired characteristics of a subsurface sector, having at least one resonant frequency, is based on selectively transmitting suitable narrowband energy waves into the subsurface sector, thereby producing narrowband signals reflected off the subsurface sector. The transmitted narrowband energy waves can be selectively and optimally adjusted in real time so as to provide optimum illumination of the desired characteristics from the explored sector.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: June 3, 2008
    Assignee: Seispec, L.L.C.
    Inventors: Jeff L. Love, Charles Ian Puryear
  • Patent number: 7376046
    Abstract: The present invention provides a seismic surveying method in which vibrators in a first vibrator group are actuated at time T0 and vibrators in a second vibrator group are actuated at time T1, where T0<T1<T0+S1+L and S1 is the sweep time of the first group and L is the listening time. This method enables the time required to complete a seismic survey to be reduced. In other embodiments, vibrators in the first vibrator group may be actuated at time T2, where T1<T2<T1+S2+L and S2 is the sweep time of the first group, and vibrators in the second vibrator group at time T3 where T2<T3<T2+S1+L and T3?T2?T1?T0. Such embodiments providing that by appropriately combining the shot records noise may be eliminated.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: May 20, 2008
    Assignee: WesternGeco L.L.C.
    Inventor: Benjamin Peter Jeffryes
  • Patent number: 7366054
    Abstract: Methods of processing seismic data to remove unwanted noise from meaningful reflection signals are provided for. The methods comprise the steps of assembling seismic data into common geometry gathers in an offset-time domain without correcting the data for normal moveout. The amplitude data are then transformed from the offset-time domain to the time-slowness domain using a Radon transformation. A corrective filter is then applied to enhance the primary reflection signal content of the data and to eliminate unwanted noise events. The corrective filter has a pass region with a lower pass limit and a higher pass limit. The higher pass limit is set within 15% above the slowness of the primary reflection signals and, preferably, it is more closely set to the slowness of the primary reflection signals. The lower pass limit is also preferably set within 15% below the slowness of the primary reflection signals.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: April 29, 2008
    Inventor: Lawrence C. Wood
  • Patent number: 7359283
    Abstract: Signals of pressure sensors and particle motion sensors located in marine seismic streamers are combined to generate pressure sensor data and particle motion data with substantially the same broad bandwidth. The noisy low frequency part of the motion signals are calculated from the recorded pressure signals and merged with the non-noisy motion signals. The two broad bandwidth data sets can then be combined to calculate the full up- and down-going wavefields.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: April 15, 2008
    Assignee: PGS Americas, Inc.
    Inventors: Svein Torleif Vaage, Stig Rune Lennart Tenghamn, Claes Nicolai Borresen
  • Patent number: 7359282
    Abstract: A method and apparatus for controlling seismic sources. The method and apparatus enable firing of a seismic sources at either a precise time or a precise position of the seismic source. Controlling the firing of the seismic source facilitates more accurate seismic data and a more consistent seismic source signature.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: April 15, 2008
    Assignee: Schlumberger Technology Corporation
    Inventor: John Tulett
  • Patent number: 7359284
    Abstract: Seismic data recorded by subsurface seismic sensors placed in a borehole, such as an oil or gas well, are transformed via a process of upward wavefield propagation to pseudo-receivers at the surface of the earth. The seismic data thus transformed can be processed as though the data had been recorded by the pseudo-receivers at the surface rather than in the borehole where the data were actually recorded. This method accurately accounts for seismic source statics, anisotropy, and all velocity effects between the real receivers in the borehole and the pseudo-receivers at the surface of the earth.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: April 15, 2008
    Inventors: Brian Nelson Fuller, John Marcus Sterling
  • Patent number: 7355923
    Abstract: System and method for performing anisotropy corrections of post-imaging seismic data for a subsurface formation. The method may receive seismic data, preferably pre-stack seismic data comprising a plurality of traces, e.g., collected from a plurality of source and receiver locations. The seismic data may be imaged/migrated to produce imaged seismic data, which is organized into an arrangement that preserves aspects of the relative seismic propagation angle in the subsurface. One or more anisotropic parameters and corresponding corrections may be determined by analyzing the organized imaged seismic data. The determined parameters or corrections may be used to correct at least a subset of the imaged seismic data, thereby producing corrected seismic data which is useable in analyzing the formation. The corrected data may then optionally be stacked to produce a collection of corrected stacked traces, and/or analyzed as desired. The pre-stack data and/or the corrected seismic data may optionally be displayed.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: April 8, 2008
    Assignee: Landmark Graphics Corporation
    Inventors: Moshe Reshef, Murray W. Roth
  • Patent number: 7339852
    Abstract: A seismic acquisition system comprising a remote-controlled buoy for conducting seismic acquisition operations. The buoy comprises an operating system for operating a seismic wave production device on the buoy, a placement system, a communications system, and dynamic position locating system. The seismic acquisition system also comprises a remote control system for controlling the buoy systems. The seismic acquisition system also comprises receivers for receiving the seismic wave and generating a data signal indicative of the received seismic wave. The seismic acquisition system operates by controlling the placement system with the remote control system to position the buoy and then controlling the operating system with the remote control system to produce a seismic wave from the seismic wave production device. The receivers then receive the seismic wave and generate a data signal indicative of the seismic wave.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: March 4, 2008
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Darrell Gordy, Bruce E. Cornish, Denis P. Schmitt, Carl A. Robbins
  • Patent number: 7336561
    Abstract: An up-going wavefield and a down-going wavefield are calculated at a sensor position from a pressure sensor signal and a particle motion sensor signal. Then, an up-going wavefield is calculated at a water bottom position substantially without water bottom multiples from the up-going and down-going wavefields at the sensor position. In one embodiment, the up-going wavefield at the sensor position is backward propagated to the water bottom, resulting in an up-going wavefield at the water bottom. The down-going wavefield at the sensor position is forward propagated to the water bottom, resulting in a down-going wavefield at the water bottom. The up-going wavefield at the water bottom without water bottom multiples is calculated from the backward propagated up-going wavefield at the water bottom, the forward propagated down-going wavefield at the water bottom, and a reflection coefficient of the water bottom.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: February 26, 2008
    Assignee: PGS Americas, Inc.
    Inventor: Claes Nicolai Borresen
  • Patent number: 7336562
    Abstract: A formation logging tool having a substantially continuous central mandrel with regularly spaced mass blocks disposed thereon, at least some of the mass blocks carrying sensors such as receivers. By adopting this structure, the tool can be made to behave as a mass-spring structure and its flexural and extensional behaviour controlled such that its dispersion curve does not extend into the dispersion curve of the formation to be logged. The structure can be applied to the whole of the logging tool or just to the receiver section and/or any spacer section between the receiver and the transmitter section.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: February 26, 2008
    Assignee: Schlumberger Technology Corporation
    Inventors: David Hoyle, Hitoshi Tashiro, Akira Otsuka, Jahir Pabon, Hitoshi Sugiyama
  • Patent number: 7324406
    Abstract: A sensor arrangement is provided for use in the seismic investigation of geological formations below the seabed. A plurality of sensor nodes (20) are provided and are positioned gfor deployment on the seabed to collect pressure waves and shear waves from the geological formations and to transfer seismic data to a surface receiver. Each sensor node (20) may include a cylindrical structure (22), which is intended to penetrate downwardly into the seabed. At least one, preferably three, geophones (30-32) are positioned in connection with this structure (22). An advantageous method for operating a seismic mapping system with sensor arrangements orderly deployed on the seabed records data concerning system behavior and seismic data. This data may be further processed separately.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: January 29, 2008
    Assignee: Sea Bed Geophysical AS
    Inventor: Eivind Berg
  • Patent number: 7321526
    Abstract: The present invention provides a method for analyzing traces collected along a plurality of adjacent sail lines in a marine seismic survey area. The method comprises selecting a plurality of trace groups, at least one trace in each group sharing a common midpoint with at least one trace from another group, determining an initial zero-offset travel time for each trace in the trace groups, and generating a plurality of updated zero-offset travel times and a plurality of time corrections for the trace groups using a pre-selected function of the initial zero-offset travel times.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: January 22, 2008
    Assignee: WesternGeco, L.L.C.
    Inventors: Charles V. Carvill, Jonathan G. Fried
  • Patent number: 7319636
    Abstract: A method for computing a pressure signal gradient. The method includes recording a plurality of pressure signals at least one of a first receiver and a second receiver. The first receiver and the second receiver are disposed within a cluster. The method further includes recording a plurality of pressure signals at the second receiver; computing a calibration filter for removing the difference in distortions between the pressure signals recorded at the first receiver and the pressure signals recorded at the second receiver; and computing the pressure signal gradient between the pressure signals recorded at the first receiver and the pressure signals recorded at the second receiver using the calibration filter.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: January 15, 2008
    Assignee: WesternGeco, L.L.C.
    Inventors: Johan O. A. Robertsson, Nicolas Goujon
  • Patent number: 7283422
    Abstract: Methods for determining the existence and characteristics of a gradational pressurized zone within a subterranean formation are disclosed. One embodiment involves employing an attenuation relationship between a seismic response signal and increasing wavelet wavelength, which relationship may be used to detect a gradational pressurized zone and/or determine characteristics thereof. In another embodiment, a method for analyzing data contained within a response signal for signal characteristics that may change in relation to the distance between an input signal source and the gradational pressurized zone is disclosed. In a further embodiment, the relationship between response signal wavelet frequency and comparative amplitude may be used to estimate an optimal wavelet wavelength or range of wavelengths used for data processing or input signal selection. Systems for seismic exploration and data analysis for practicing the above-mentioned method embodiments are also disclosed.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: October 16, 2007
    Assignee: Battelle Energy Alliance, LLC
    Inventors: G. Michael Shook, Samuel D. LeRoy, William M. Benzing
  • Patent number: 7269095
    Abstract: A network distributed seismic data acquisition system comprises seismic receivers connected to remote acquisition modules, receiver lines, line tap units, base lines, a central recording system and a seismic source event generation unit synchronized to a master clock. One or more high precision clocks is added to the network to correct for timing uncertainty associated with propagation of commands through the network. Seismic receivers and seismic sources are thereby synchronized with greater accuracy than otherwise possible. Timing errors that interfere with the processing of the seismic recordings are greatly reduced, thus enabling an improvement in subsurface geologic imaging.
    Type: Grant
    Filed: September 1, 2003
    Date of Patent: September 11, 2007
    Assignee: ARAM Systems, Ltd.
    Inventors: Donald G. Chamberlain, Norman David Heidebrecht
  • Patent number: 7266041
    Abstract: Methods for scanning geophysical data sets to find geological entities with specific geophysical responses entail selecting a focus sub-volume and a background sub-volume proximal to the focus sub-volume. The sub-volumes include discrete sampling locations and are located within at least two geophysical data sets. Each discrete sampling location has associated data values. The background data volume and each data value are normalized. A determination is made to whether a data value is inside or outside of the background data. A distance value is associated with each determination. The distance values are evaluated to find discrete sampling locations with specific geophysical responses. The anomalous data points can be related to the presence of hydrocarbon or water bearing strata at the corresponding depth locations of the data points.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: September 4, 2007
    Inventor: Michael John Padgett