Patents Examined by Sean P Cullen
  • Patent number: 10897064
    Abstract: A cell assembly before initial charging, including an electrode body having a positive electrode and a negative electrode, a nonaqueous electrolytic solution including a nonaqueous solvent and a supporting salt, and a case housing the electrode body and the nonaqueous electrolytic solution. The negative electrode has a negative electrode mixture layer including a particulate negative electrode active material made of amorphous-coated graphite in which the surface of graphite particles is coated with amorphous carbon, and the nonaqueous electrolytic solution includes lithium fluorosulfonate. The oil absorption amount of the negative electrode active material is 35 ml/100 g to 50 ml/100 g, and a weight proportion of the lithium fluorosulfonate in the nonaqueous electrolytic solution is 0.65 wt % to 0.85 wt %. As a result, it is possible to provide a high-performance nonaqueous electrolyte secondary cell in which both the high-rate characteristic and the Li precipitation resistance are realized at a high level.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: January 19, 2021
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kayo Egawa
  • Patent number: 10886574
    Abstract: An electrode for a secondary battery includes titanium-containing oxide as an active material. The median pore diameter of the electrode is 0.050 ?m or more and 0.1 ?m or less and pore surface area of the electrode is 4 m2/g or more and 8 m2/g or less, by mercury porosimetry.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: January 5, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tetsuya Sasakawa, Norio Takami
  • Patent number: 10886520
    Abstract: An electrode assembly, a rechargeable battery comprising the same, and a method for manufacturing the rechargeable battery are provided. The electrode assembly comprises an electrode stack in which a plurality of electrodes and a plurality of separators are alternately combined. The electrode assembly also comprises an electrode tab part including a plurality of electrode tabs respectively connected to the plurality of electrodes to extend from a side surface of the electrode stack. The electrode tab part comprises an inclined portion provided on a first side thereof and a tab collection portion provided on a second side thereof, the inclined portion extends from the side surface of the electrode stack and bent in a direction, in which the plurality of electrode tabs are collected, and the tab collection portion extends from the inclined portion and has a shape in which the plurality of electrode tabs are joined.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: January 5, 2021
    Inventors: Jong Pil Park, Seung Don Choi
  • Patent number: 10886538
    Abstract: A method for preparing particles comprising a material suitable for catalysing oxygen reduction or hydrogen oxidation, the particles being grafted by grafts consisting of at least one specific polymer comprising at least one repeating styrene unit bearing at least one proton-conducting group.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: January 5, 2021
    Assignee: COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Pierrick Buvat, Delphine Dru, Cédric Loubat, Quentin Crouzet
  • Patent number: 10873067
    Abstract: A multi-cell battery pack includes adjacent thin-film battery cells electrically coupled to one another with a conductive battery cell connection tab. The conductive battery cell connection tab is folded at a deflection point separating a first aperture in a first portion from a second aperture in a second portion. The first aperture and the second aperture are aligned with one another along an axis while the first portion and the second portion are positioned to rest adjacent to opposite surfaces of a first thin-film battery cell. In this position, the first portion and the second portion electrically couple a first thin-film battery cell to a second thin-film battery cell in a same battery cell stack.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: December 22, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Gregory Yoder, Minsoo Kim
  • Patent number: 10873075
    Abstract: A composite anode material including an active material including a core of silicon, silicon oxide, or combination thereof encased within a buffer layer including a polymeric material, and a shell encapsulating the active material. The shell may include graphene, graphene oxide, partially reduced graphene oxide, or combinations thereof.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: December 22, 2020
    Assignee: NANOGRAF CORPORATION
    Inventors: Seonbaek Ha, Cary M. Hayner, Joshua J. Lau, James McKinney, Francis Wang, Woo Hyun Chae
  • Patent number: 10873100
    Abstract: A method for synthesizing a nanocomposite membrane, and a synthesized nanocomposite membrane made thereby. The method may include steps of preparing Fe3O4-tolylene di-isocyanate (TDI) nanoparticles by reacting Fe3O4 nanoparticles and TDI powder, preparing Fe3O4-TDI-TiO2 nanoparticles, sulfonating the Fe3O4-TDI-TiO2 nanoparticles, preparing a first polymer solution, dispersing the Fe3O4-TDI-TiO2—SO3H nanoparticles into the first polymer solution to obtain a second homogenous solution, and casting and drying the second homogenous solution to obtain the nanocomposite membrane.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: December 22, 2020
    Inventors: Ali Amoo Zadeh, Hourieh Mazdarani, Hossein Beydaghi, Elham Tabrizian, Mehran Javanbakht
  • Patent number: 10868310
    Abstract: A foil (5b) for a negative electrode collector of a secondary battery includes a Cu-coated foil (50) including an iron-based alloy layer (51) made of precipitation hardened stainless steel, and a pair of Cu layers (52, 53) respectively disposed on opposite surfaces of the iron-based alloy layer and made of Cu or a Cu-based alloy. The negative electrode collector foil has a thickness of 20 ?m or less and a volume resistivity of 7 ??·cm or less.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: December 15, 2020
    Assignee: HITACHI METALS, LTD.
    Inventors: Yoshimitsu Oda, Ryoji Inoue, Wataru Kushima
  • Patent number: 10868314
    Abstract: A method of preparing a porous separator for a fuel cell, including preparing a plurality of porous pattern structures, each porous pattern structure includes a plurality of regularly repeated unit holes and a center axis passing through a center of one unit hole and through a center of another unit hole adjacent to the one unit hole, and stacking the plurality of porous pattern structures, wherein a center axis of one porous pattern structure and a center axis of another porous pattern structure adjacent to the one porous pattern structure are spaced apart from each other or intersect to form an angle of larger than 0° but lower than 90°.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: December 15, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Dahora Lee, Jae Choon Yang
  • Patent number: 10854921
    Abstract: An electrochemical cell including at least one nitrogen-containing compound is disclosed. The at least one nitrogen-containing compound may form part of or be included in: an anode structure, a cathode structure, an electrolyte and/or a separator of the electrochemical cell. Also disclosed is a battery including the electrochemical cell.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: December 1, 2020
    Assignee: Sion Power Corporation
    Inventors: Chariclea Scordilis-Kelley, Joseph Kubicki, Shuguang Cao, Yuriy V. Mikhaylik
  • Patent number: 10847804
    Abstract: The present invention related to a method for preparing carbon nanospheres modified current collector and its application in metal secondary battery. The said method includes the preparation of carbon nanospheres modified current collector by chemical vapor deposition process and the process for loading metal into the modified current collector as an anode. Comparing with the bare Ni, the said anode with modified current collector demonstrates enhanced stripping/plating efficiency, well confinement of Li dendrite, stable long lifespan and strengthen safety.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: November 24, 2020
    Assignee: INSTITUTE OF CHEMISTRY, CHINESE ACADEMY OF SCIENCES
    Inventors: Yuguo Guo, Huan Ye, Yaxia Yin
  • Patent number: 10847817
    Abstract: The invention relates to a method to determine a content of a gas component in a gas mixture delivered recirculating through an anode chamber (12) or a cathode chamber (13) of a fuel cell (10), wherein the delivery takes place via a delivery device (26) functioning according to the positive displacement principle. The invention also relates to a fuel cell system (100) configured to execute the method. According to the invention, the content of the gas component is determined depending on geometric parameters (V, ?) and operating parameters (n, U, I) of the delivery device (26), as well as on thermodynamic state variables (p, T) of the gas mixture. The sought target quantity, for example a hydrogen component of an anode gas, can thus be determined in a simple and robust manner from quantities that are already known or measured.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: November 24, 2020
    Assignees: VOLKSWAGEN AG, AUDI AG
    Inventors: Harald Heinrich, Wolfgang Hable, Torsten Schwarz
  • Patent number: 10833309
    Abstract: A secondary battery in which convection in an electrolyte solution occurs easily is provided. A secondary battery whose electrolyte solution can be replaced is provided. A nonaqueous secondary battery includes a positive electrode, a negative electrode, a separator, and an electrolyte solution, and the separator includes grooves capable of making convection in the electrolyte solution occur easily. The nonaqueous secondary battery has at least one expected installation direction, and the grooves in the separator are preferably formed so as to be perpendicular to an expected installation surface. The exterior body includes a first opening for injection of an inert gas into the exterior body and a second opening for expelling or injection of an electrolyte solution from or into the exterior body. An electrolyte solution replacement apparatus has a function of injecting the inert gas through the first opening and expelling or injecting the electrolyte solution through the second opening.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: November 10, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Minoru Takahashi, Masaaki Hiroki
  • Patent number: 10833320
    Abstract: The present invention provides for a composition of matter comprising: poly(9,9-dioctylfluorene-co-fluorenone-co-methylbenzoic ester)(PFM), carbon nanotubes (CNT), and sulfur particles nanocomposite, wherein the nanocomposite is porous. The present invention also provides for an electrode comprising: poly(9,9-dioctylfluorene-co-fluorenone-co-methylbenzoic ester)(PFM), carbon nanotubes (CNT), and sulfur particles nanocomposite, wherein the nanocomposite is porous. The present invention also provides for a lithium sulfur (Li—S) battery comprising: an electrode comprising poly(9,9-dioctylfluorene-co-fluorenone-co-methylbenzoic ester)(PFM), carbon nanotubes (CNT), and sulfur particles nanocomposite, wherein the nanocomposite is porous.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: November 10, 2020
    Assignee: The Regents of the University of California
    Inventors: Gao Liu, Guo Ai, Hui Zhao
  • Patent number: 10833370
    Abstract: A battery includes a current collector, first electrode layer, first counter electrode layer, and second electrode layer. The current collector includes a first electroconductive portion, first insulating portion, and second electroconductive portion. The second electroconductive portion includes a first edge region, first front face region, first rear face region, first fold portion, second front face region, second rear face region, and second edge region. The first and second rear face regions face each other by the current collector being folded. The first electrode layer is disposed in contact with the first electroconductive portion, the first counter electrode layer in contact with the first front face region, and the second electrode layer in contact with the second front face region. The first insulating portion links the first electroconductive portion and first edge region. The first electrode layer and first counter electrode layer face each other by the current collector being folded.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: November 10, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Kazuyoshi Honda
  • Patent number: 10833362
    Abstract: A secondary battery is provided. The secondary battery includes a cathode; an anode; and an electrolytic solution, wherein the anode comprises an anode active material layer, wherein the anode active material layer comprises a carbon material, wherein the anode active material layer has a thickness from about 40 micrometers to about 100 micrometers, and wherein the electrolytic solution comprises an unsaturated cyclic ester carbonate represented by Formula (2): where R5 and R6 are selected from the group consisting of a hydrogen group, an alkyl group, an alkyne group, and an aryl group.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: November 10, 2020
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Masayuki Ihara, Tadahiko Kubota
  • Patent number: 10826133
    Abstract: An apparatus and method of keeping an energy storage cell at or above a target temperature, includes receiving at a processing circuit, an analog voltage that is proportional to a temperature of the energy storage cell, converting, at the processing circuit, the analog voltage to a pulse-width-modulated signal having a duty cycle that is proportional to the analog voltage, and driving a switch, with the pulse-width-modulated signal, between conductive and non-conductive states to modulate a voltage passing across (or a current flowing through) a heating element in series with the switch, the heating element being in thermal communication with the energy storage cell, wherein the duty cycle of the pulse-width-modulated signal is adjusted to maintain the temperature of the energy storage cell at or above the target temperature.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: November 3, 2020
    Assignee: Sanmina Corporation
    Inventors: James Kenneth White, Paul Sweere, Alec Shen
  • Patent number: 10826139
    Abstract: A battery enclosure shaped and sized to accept and surround a battery includes an outer case defining an aperture and having a base forming a bottom of the battery enclosure, the case having a first wall connected to a second wall, the second wall connected to a third wall, and a fourth wall portion connected to the first and third walls, each of the first, second, third, and fourth walls extending orthogonally from the base. The battery enclosure including a separable outer lid shaped to fit around the aperture of the case. The outer case and the outer lid having a material having thermal conductivity of less than about 0.3 W/mK, the battery enclosure has an air inlet selectively providing airflow to the battery enclosure and an air outlet selectively providing airflow from the battery enclosure, the outer case has a first thickness, the outer lid portion has a second thickness.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: November 3, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dave G. Rich, Saad Hasan, Jeffrey Wyka, Jianfeng Wang, Dewen Kong, Haijing Liu
  • Patent number: 10818884
    Abstract: Disclosed is a pouch-type secondary battery, which includes an electrode assembly having a positive electrode plate and a negative electrode plate disposed to face each other and a pouch case having a concave groove formed to accommodate the electrode assembly, wherein the pouch case includes a first pouch film and a second pouch film thermally fused to the first pouch film, and wherein a concave groove is formed in at least one of the first pouch film and the second pouch film, and the concave groove has a bottom surface on which the electrode assembly is placed so that the bottom surface has an area equal to or greater than an area of a reference surface that covers an opening of the concave groove.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: October 27, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Jung-Pil Lee, Eun-Bee Kim, Ji-Young Kim, Eun-Kyung Mok, Hye-Ri Jung
  • Patent number: 10818955
    Abstract: A fuel cell unit includes: a fuel cell module including a fuel cell stack including: a stacked body in which unit cells are stacked; a pair of end plates sandwiching the stacked body in a stacking direction; a facing member facing an outer surface of the stacked body extending along the stacking direction; and first and second restriction members arranged between the facing member and the stacked body, and restricting a position of the stacked body in a direction perpendicular to the stacking direction by contacting with the outer surface; and fixing members fixing the fuel cell module to a fixed member.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: October 27, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomoaki Uchiyama, Masayuki Ito