Patents Examined by Serena L Hanor
  • Patent number: 7442351
    Abstract: The invention relates to a process for producing a stable solution containing Anatase titanium oxide intended to be deposited on a substrate in order to obtain a transparent photo-catalytic coating. Such a process includes the preparation of an initial stabilized peptized solution including a titanium precursor material, an organic solvent, an acid agent, the mixing of said initial solution with a large amount of water, the pH of the obtained intermediate solution being less then 3, subjecting said intermediate solution and its dispersion to a heat-treatment, the exchange of water by an organic solvent with low surface tension to obtain a final solution that is finally dispersed. The invention particularly allows to coat thermally sensitive and/or transparent substrates with photo-catalytic films of high optical quality.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: October 28, 2008
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: Michel Langlet, Christophe Vautey, Alexei Kim
  • Patent number: 7442848
    Abstract: The present invention relates generally to the destruction of chemical weapons. In particular, the present invention relates to methods for treating hydrolysates of chemical agents. In one embodiment, the present invention provides a method comprising oxidizing a hydrolysate of a chemical agent to produce an aqueous layer and an organic layer, the aqueous layer comprising an organophosphorus concentration and the organic layer comprising an organosulfur concentration, and separating the organic layer from the aqueous layer.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: October 28, 2008
    Assignee: Perma-Fix Environmental Services, Inc.
    Inventors: John Staton, Steve Schneider, Louis F. Centofanti, David Badger, David A. Irvine, Randall B. Marx
  • Patent number: 7442357
    Abstract: A kinetically controlled vapor reaction process for synthesizing silica areogel in a reaction container by injection of a precursor reagent vapor, a catalyst reagent vapor, super saturated steam as a component of the catalyst solution, and a hydrophobic reagent vapor amd continuously mixing vapor droplets of the precursor, catalyst and water reagents in a super saturated state to continuously nucleate in a hydrolysis/poly-condensation reaction and deposit as silica aerogel.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: October 28, 2008
    Assignee: Keller Companies, Inc.
    Inventor: Robert R. Keller, Sr.
  • Patent number: 7442358
    Abstract: A carbonaceous particle is provided which comprises a hexagonal flake formed of an aggregate of a plurality of nanocarbons and having a side length of 0.1 to 100 mm and a thickness of 10 nm to 1 mm. Thereby, a carbonaceous particle is provided which has an excellent electron emission performance, has a high electron conductivity, shows excellent characteristics particularly when used for a secondary battery, and can suitably be applied to various devices other than a secondary battery as well.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: October 28, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hitomi Sano, Soichiro Kawakami, Tomoya Yamamoto, Katsuhiko Inoue
  • Patent number: 7438883
    Abstract: A method for preparing a high-pressure phase cubic spinel-type silicon nitride includes housing a molding containing low-pressure phase silicon nitride powder and a metal powder in a cylindrical container, arranging an explosive in the cylindrical container so as to surround the molding, and exploding the explosive to compress the molding. An X-ray diffraction pattern of the high-pressure phase cubic spinel-type silicon nitride produced according to the method of the present invention shows a maximum peak having a full width at half maximum of 0.65 degrees or less. TG-DTA analysis of the cubic spinel-type silicon nitride shows a weight change starting temperature of 700 to 1100° C.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: October 21, 2008
    Assignees: NOF Corporation, National Institute for Materials
    Inventors: Kenji Ito, Katsuhiko Takahashi, Toshimori Sekine
  • Patent number: 7438887
    Abstract: Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: October 21, 2008
    Assignee: The University of Connecticut
    Inventors: Steven Lawrence Suib, Jikang Yuan
  • Patent number: 7429371
    Abstract: Carbon nanotubes have been reversibly and readily oxidized and reduced with common chemicals in solution, thereby allowing the nanotubes to be used as catalysts for chemical reactions and as stable charge storage devices.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: September 30, 2008
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Bruce A. Diner, Ming Zheng
  • Patent number: 7427580
    Abstract: A method is described for producing a high temperature shift catalyst, not requiring a reduction step prior to use, by precipitating a composition containing divalent and trivalent iron compounds and a modifier metal selected from trivalent chromium and/or manganese compounds from an aqueous solution containing iron and modifier metal salts with a base, and forming the resultant precipitate into shaped catalyst units, without exposing said precipitate to an oxidizing atmosphere at temperatures above 200° C.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: September 23, 2008
    Assignee: Johnson Matthey PLC
    Inventors: Andrew Mark Ward, Sean Alexander Axon, Paul John Murray
  • Patent number: 7419649
    Abstract: The present invention relates to an energy storage device comprising a macroreticular carbonaceous material having a distribution of micropores, mesopores and macropores wherein the macroreticular carbonaceous material has a total surface area of from greater than 500 m2/g to 2500 m2/g and wherein 20% to 80% of the total surface area is due to pores with diameters of from 17 angstroms to 100,000 angstroms. In addition, the present invention relates to an energy storage device comprising a macroreticular carbonaceous material having at least one first distinct peak representing a pore size of less than or equal to 20 angstroms when measured utilizing H-K dv/dlog(W) pore size distribution and at least one second distinct peak representing a pore size greater than 20 angstroms when measured utilizing BJH dv/dlog(D) pore size distribution.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: September 2, 2008
    Inventors: Eric Gustave Lundquist, Garth R. Parker
  • Patent number: 7413726
    Abstract: The present invention provides a low temperature process for the synthesis of ultrafine rutile phase titanium dioxide particles through vapor phase hydrolysis of titanium tetra chloride.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: August 19, 2008
    Assignee: Council of Scientific and Industrial Research
    Inventors: Gerald D. Surender, Ani K. John, Kumara P. Rajendra Prasad, Savithri Sivaraman
  • Patent number: 7393518
    Abstract: A zirconia sol having zirconia crystals with an average primary particle size less than 20 nm is provided, wherein more than 90% of the zirconia crystals exist in the form of tetragonal and cubic crystal lattice structures. The zirconia sol has a transmittance more than 70% when the amount of the zirconia crystals in the zirconia sol is about 20 wt %.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: July 1, 2008
    Assignee: National Central University
    Inventors: Anthony S. T. Chiang, Xiu-Sheng Yang, Chien-Wei Chen