Abstract: Disclosed herein are antibody-nanoparticle conjugates that include two or more nanoparticles (such as gold, palladium, platinum, silver, copper, nickel, cobalt, iridium, or an alloy of two or more thereof) directly linked to an antibody or fragment thereof through a metal-thiol bond. Methods of making the antibody-nanoparticle conjugates disclosed herein include reacting an arylphosphine-nanoparticle composite with a reduced antibody to produce an antibody-nanoparticle conjugate. Also disclosed herein are methods for detecting a target molecule in a sample that include using an antibody-nanoparticle conjugate (such as the antibody-nanoparticle conjugates described herein) and kits for detecting target molecules utilizing the methods disclosed herein.
Type:
Grant
Filed:
June 21, 2018
Date of Patent:
August 29, 2023
Assignee:
Ventana Medical Systems, Inc.
Inventors:
Julia Ashworth-Sharpe, Christopher Bieniarz, Michael Farrell, Donald D. Johnson, Jerome W. Kosmeder, Adrian E. Murillo, Chol Steven Yun, Zhanna Zhilina
Abstract: A method and a device for detection and quantification of various organic analytes in a liquid sample and an assay substrate for providing analyte measurements. The method is implemented by using specific interaction of organic analytes with selective binding sites immobilized on a multi-layer assay substrate with further detection of such interaction with a device based on inducing and recording the fluorescence of the substrate for bio-chemical, genetic and environmental analyses.
Type:
Grant
Filed:
January 20, 2020
Date of Patent:
May 16, 2023
Assignee:
QANIKDX OÜ
Inventors:
Sergei Babitshenko, Jaak Järv, Aleksei Kuznetsov, Anton Mastitski
Abstract: Disclosed is a method for preparing a magnetic microsphere for the separation of biological proteins. A magnetic microsphere matrix is treated by formulating and using an appropriate emulsified liquid, and modification of the surface of the magnetic microsphere matrix is realized by emulsion polymerization, thereby obtaining a magnetic microsphere coated with a polyacrylate polymer layer. Said emulsified liquid comprises the following components therein: acyclic acid monoester compounds, acyclic acid glycol compounds, initiators and optionally anionic surface active agents and water. The magnetic microsphere significantly reduces the non-specific adsorption of other proteins, without affecting the joining ability for a specific protein, when used in the separation of biological proteins. A new selection is provided to realize the separation engineering of high protein specificity adsorption.
Type:
Grant
Filed:
May 29, 2014
Date of Patent:
July 7, 2020
Assignee:
SHENZHEN NEW INDUSTRIES BIOMEDICAL ENGINEERING CO., LTD.
Abstract: Provided are a detection agent for detecting hydroxy vitamin D, preparation method thereof, and use thereof in 25-hydroxy vitamin D immunological detection. The detection agent comprises a conjugate formed by a 25-hydroxy vitamin D antigen derivative and protein carrier, and magnetic spheres coated by the conjugate. Also provided is a 25-hydroxy vitamin D detection kit comprising the detection agent.
Type:
Grant
Filed:
July 10, 2014
Date of Patent:
October 30, 2018
Assignee:
SHENZHEN NEW INDUSTRIES BIOMEDICAL ENGINEERING CO., LTD
Inventors:
Wei Rao, Tinghua Li, Kai Du, Jinyun Yuan, Kai Luo, Huiling Yu
Abstract: This invention discloses “Artificially Cleaved Epitope (ACE)” methods, antibodies, reagents, immunoassays, and kits for designing and detecting hidden epitopes/antigens. The ACE methods can detect epitopes that are either absent or poorly accessible naturally to antibodies, and thus must be specifically and artificially created (free terminals) and/or exposed in samples and sample preparations for antibody detection. The ACE structures include, but are not limited to, macromolecule-to-macromolecule conjugation sites, and any types of linear hidden epitopes. The ACE methods comprise ACE antigen design and ACE antigen detection. The ACE methods, antibodies, reagents, immunoassays, and kits are useful in research and discovery, diagnostic, and therapeutic applications. In another aspect, the ACE methods can artificially and specifically expose hidden antigens while reducing the antibody non-specific bindings in all antibody-based applications.
Abstract: Methods comprising the use of photoactivated chemical bleaching for detecting multiple targets in a biological sample are provided. The methods include the steps of providing a biological sample containing multiple targets, binding at least one probe to one or more target present in the sample, and observing a signal from the probe. The method further includes the steps of contacting the sample comprising the bound probe with an electron transfer reagent and irradiating the sample, thereby initiating a photoreaction that substantially inactivates the probe by photoactivated chemical bleaching. The method further includes the steps of binding at least one probe to one or more target present in the sample, and observing a signal from the probe. The process of binding, observing and bleaching may be iteratively repeated.