Patents Examined by Shawn Riley
  • Patent number: 8050067
    Abstract: A control system for controlling conversion of an input power into an output power in a converter module is provided. The control system includes an input power terminal, an output power terminal, and an active switching device. The control system further includes a master controller and a communication link interconnecting the master controller and the converter module. Also, the system has a timing generator generating a timing signal with a cycle time equal to or less than the shortest time constant of the converter module and immediate power circuit elements relating to the converter module. The timing generator is integrated in or interconnected with the master controller. Furthermore, the control system has a signal generator integrated in or interconnected with the master controller generating switching control signals, each switching control signal containing a control message defining a switching state for the active switching device.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: November 1, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Robert Vernon Fulcher, Rodney Jones, Philip Perry Waite
  • Patent number: 8049362
    Abstract: A method and system of inverting DC energy stored within a vehicle to AC energy sufficient for supplying appliances or other devices that traditionally receive AC energy from a wall outlet. The inverting may be executed without feedback control in that switching operations used to controller boosting and inverting the DC energy are controller solely from inputs and without regard to the actual output.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: November 1, 2011
    Assignee: Lear Corporation
    Inventors: Yann Darroman, Albert Trenchs Magana, Pere Lopez Veraguas
  • Patent number: 8044642
    Abstract: In a power supply device, a synchronous rectifier step-down converter alternately turns on and off a switch and a synchronous rectifier switch. A reference voltage generator generates a predetermined reference voltage. An error amplifier outputs an error voltage such that an output voltage of the step-down converter approaches the predetermined reference voltage. A pulse-width signal generator generates a pulse-width signal controlling turning on and off the switch and the synchronous rectifier switch based on the error voltage. A driver circuit controls turning on and off the switch and the synchronous rectifier switch based on the pulse-width signal. An inductor is connected in series with output of the step-down converter. A bypass switch short-circuits an output terminal of the step-down converter to an input terminal of the step-down converter. A mode controller controls turning on and off the bypass switch.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: October 25, 2011
    Assignee: Ricoh Company, Ltd.
    Inventors: Yohichi Sakai, Shinichi Kojima
  • Patent number: 8040700
    Abstract: A charge pump has circuitry and implements a method for monitoring a synchronous load by using a first voltage threshold below a target output voltage and a second voltage threshold above a target output voltage. An output terminal is coupled to the load. Charge is demanded by clocking the load. When the target output voltage passes below the first voltage threshold, a first value representing a present size of a charging capacitance is stored as a stored first value, and a second stored value representing a needed changed size of the charging capacitance is used. The present size of the charging capacitance is changed in response to the passing of the target output voltage below the first voltage threshold. When demand for charge from the load is reduced, a present value is saved and a prior value is restored to change the size of the charging capacitance.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: October 18, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Thomas D. Cook, Jeffrey C. Cunningham, Karthik Ramanan
  • Patent number: 8035999
    Abstract: An isolating self-oscillation flyback converter includes a coupling transformer T1, a FET TR1, a transistor TR2, a photoelectric coupling isolator OC1 and a load feedback circuit Adj. The common polarity terminal of a feedback winding Nfb of the coupling transformer T1 is connected to the gate of the FET TR1 via a capacitance C1 and a resistance R2, and connected to the base of the transistor TR2 via a capacitance C2. The base of the transistor TR2 is also connected to the emitter of the photoelectric coupling isolator OC1. The photoelectric coupling isolator OC1 is connected to the positive terminal of the output voltage. The opposite polarity terminal of the feedback winding Nfb is connected to the collector of the photoelectric coupling isolator OC1 via a resistance R5, and connected to ground via a capacitance C5. The common polarity terminal of the feedback winding Nfb is also connected to the cathode of a diode D, and the anode of the diode D is connected to ground.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: October 11, 2011
    Assignee: Mornsun Guangzhou Science & Technology Limited
    Inventors: Jiangjian Huang, Jianfeng Song
  • Patent number: 8035996
    Abstract: Disclosed are full-bridge power converters providing DC output power at increased conversion efficiencies, and methods of operating full-bridge power converters providing DC output power at increased conversion efficiencies. In disclosed embodiments, the switches of the full-bridge are operated to reduce conduction losses and to provide for zero-voltage switching.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: October 11, 2011
    Assignee: Intersil Americas Inc.
    Inventor: Fred Greenfeld
  • Patent number: 8035995
    Abstract: This invention relates to an ACDC converter (1) comprising a converter input (3) and a converter output (5), a pre-regulation stage (7) and a DC transformer stage (9) comprising a transformer input stage (11) and a transformer output stage (13). The transformer input stage comprises a double ended converter and there is further provided a controller (17) for providing a control signal to the double ended converter. The controller (17) operates the ACDC converter using burst mode control and by sending control signals comprising pulse sets that are designed to provide substantially zero net magnetising current in the double ended converter. The pre-regulation stage preferably comprises a buck converter which in turn also provides power factor correction to the input of the ACDC converter.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: October 11, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: George Young, Garry Tomlins, Andrew Bernard Keogh
  • Patent number: 8030978
    Abstract: A soft-start circuit is provided. The soft-start circuit comprises: an input stage, a pump stage, a second resistor and a capacitor. The input stage comprises a first resistor to receive an input voltage to provide a reference current at a first node. The pump stage comprises N current branches connected in parallel each comprising a current source connected to the first node and a switch to transfer the current from the current source to the second node while the switch operates in a connecting state. The switches has 2N connecting modes performed one after another to generate an output current with a gradual increment output current at the second node with 2N current levels; and the second resistor and the capacitor are connected in parallel between the second node and the ground potential to generate an output voltage with a gradual increment with 2N voltage levels according to output current.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: October 4, 2011
    Assignee: Himax Analogic, Inc.
    Inventor: Jyi-Hung Tseng
  • Patent number: 8030911
    Abstract: A hybrid control circuit and method combine analog circuit and digital circuit to generate digital PWM signals for a multiphase DC-DC converter to generate an output voltage. For current balance control, analog current error signals are generated by the analog circuit from analog phase current signals of the multiphase DC-DC converter and then converted into digital current error signals for calculating the duties of each phase of the multiphase DC-DC converter. Therefore, fewer bit devices can be used to achieve precise current balance control and the size and cost of the circuit can be reduced.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: October 4, 2011
    Assignee: Richtek Technology Corp.
    Inventors: Hung-Shou Nien, Kuang-Yao Cheng, Yi-Chiang Fu, Wei-Hsu Chang
  • Patent number: 8031490
    Abstract: To provide a power supply circuit which can be applied worldwide without using a high withstand voltage switching element and can supply a load device with stable power. A charging section is arranged between a turn-off capacitor and a load coil. The charging section has the anode connected to the positive terminal of a feedback coil and the cathode connected to the cathode of a zener diode. Thus, when a voltage of a commercial power supply is high, the charging section operates, the turn-off capacitor is quickly charged, an on-period of a transistor is shortened, and an excessive voltage is prevented from being applied between the drain and the source of the transistor. At the same time, an output characteristic indicating relationship between the voltage of the commercial power supply and a current flowing in the load device is permitted to be flat.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: October 4, 2011
    Assignee: Panasonic Electric Works Co., Ltd.
    Inventors: Hiroyasu Kitamura, Mikihiro Yamashita, Seiichi Iwao
  • Patent number: 8027178
    Abstract: A power conversion apparatus with adjustable leading-edge-blanking (LEB) time and an over current protection (OCP) method thereof are provided. In the OCP method, a pulse-width-modulation (PWM) signal is generated according to the loading status of an electronic device to switch a power switch in the power conversion apparatus and thus the power conversion apparatus to supply an output voltage to the electronic device. A variable or fixed LEB signal is generated according to the PWM signal and the rising and falling edges of a spike signal induced at turn-on instant of the power switch. The PWM signal is constantly/continuously generated to switch the power switch during an enabling period/phase of the variable or fixed LEB signal, and whether an over current is produced in the power conversion apparatus is constantly detected to determine whether to activate an OCP mechanism during a disabling period/phase of the variable or fixed LEB signal.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: September 27, 2011
    Assignee: Power Forest Technology Corporation
    Inventor: Ju-Lin Chia
  • Patent number: 8026700
    Abstract: In a D.C. to D.C. converter, an input voltage is received via an inductor at an input terminal and stored onto a capacitor of an integrator. A first switch is coupled between the input terminal and a reference terminal such as ground and thereby fluxes the inductor. The input voltage stored on the capacitor falls at a rate determined by the integrator circuit and an initial value of the input voltage. After a time duration, the first switch becomes nonconductive. Current flows from the inductor through a diode to an output terminal until a second switch across the diode is made conductive. Stored voltage on the capacitor of the integrator increases in response to the second switch being conductive. The stored voltage on the capacitor is continuously compared with a reference voltage. The second switch is made nonconductive when the stored voltage on the capacitor exceeds the reference voltage.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: September 27, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventor: John M. Pigott
  • Patent number: 8027177
    Abstract: A transformer includes a first secondary winding, a second secondary winding, and a third secondary winding. The second secondary winding and the third secondary winding are wound to include the same number of turns and to have opposite magnetic polarities. A low-pass filter includes a second inductor defined by a leakage inductance of the second secondary winding connected in series with the second secondary winding, a second inductor defined by a leakage inductance of the third secondary winding connected in series with the third secondary winding, and a second capacitor. An output voltage is output from an output terminal of the low-pass filter.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: September 27, 2011
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Tatsuya Hosotani
  • Patent number: 8022678
    Abstract: A power supply device includes first and second power factor correctors, and first and second resonant circuits. The first and second power factor correctors are for receiving an alternating current (AC) input voltage, and are driven by first and second driving signals for rectifying the AC input voltage to generate first and second driving voltages, respectively. The first and second resonant circuits are coupled to the first and second power factor correctors for receiving the first and second driving voltages, respectively, and have output sides that are coupled in parallel for outputting an output voltage. The first power factor corrector and the first resonant circuit in combination is parallel-connected to the second power factor corrector and the second resonant circuit in combination.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: September 20, 2011
    Assignees: Silitek Electronic (Guangzhou) Co., Ltd., Lite-On Technology Corp.
    Inventors: Mingzhu Li, Qinglin Zhao, Zhihong Ye, Chunlin Zhang, Xuezheng Ding
  • Patent number: 8018740
    Abstract: An embodiment of the invention provides a method of reducing surge current in an LLC converter. The LLC converter comprises a switching circuit having a first switch and a second switch, a resonant circuit, and a rectification circuit. During start up of the LLC converter, first and second signals having a fixed period and a variable duty cycle are applied to the first and second switches respectively. When a predetermined voltage on a load configured to be coupled to the rectification circuit is reached, the first and second signals are changed to signals having a variable period and a fixed duty cycle.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: September 13, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Bosheng Sun, Yuwei Luo, Zhong Ye
  • Patent number: 8018209
    Abstract: A switching regulator for fixing a frequency which includes a power stage circuit, for receiving an input voltage and outputting an output voltage according to an control signal; a reference voltage generator for generating a reference voltage; a comparator for outputting a comparing result according to the output voltage and the reference voltage; a constant-time trigger circuit for outputting the control signal according to the comparing result and a compensating signal; an a frequency compensator for outputting the compensating signal according to the output voltage and a phase signal; wherein the phase signal is corresponding to the magnitude of the voltage across the lower gate switch of the power stage circuit.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: September 13, 2011
    Assignee: Anpec Electronics Corporation
    Inventor: Yueh-Lung Kuo
  • Patent number: 8018210
    Abstract: A voltage converting circuit including a power stage, a filter, a comparator, a first and a second feedback units. The power stage receives an input voltage and outputs the input voltage according to a duty cycle. The filter receives the input voltage to convert the input voltage into a current, and filters the current to obtain an output voltage. The first feedback unit amplifies a difference between a reference voltage and the output voltage to obtain an error voltage. The second feedback unit calculates the quadratic differential and integration of the output voltage to obtain a sensing voltage. The comparator compares the error voltage and the sensing voltage, and outputs a comparing result to adjust a duty ratio. Herein, a ripple of the output voltage is linearly proportional to that of the current, and DC divided voltage level of the output voltage is substantially equal to the reference voltage.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: September 13, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Ke-Horng Chen, Shih-Jung Wang, Yu-Huei Lee, Yung-Chih Lai, Hsuan-Yu Tsai
  • Patent number: 8018208
    Abstract: A voltage regulator has a switch configured to alternately couple and decouple a voltage source through an inductor to a load, feedback circuitry to generate a feedback current, a current sensor configured to measure the feedback current, and a controller configured to receive the feedback current measurement from the current sensor and, in response thereto, to control a duty cycle of the switch. The feedback circuitry includes an amplifier having a first input configured to receive a desired voltage, a second input, and an output, a capacitor connecting the second input to the output of the amplifier, and a resistor connecting the output of the amplifier and the output terminal such that a feedback current proportional to a difference between the desired voltage and an output voltage at an output terminal flows through the resistor.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: September 13, 2011
    Assignee: Volterra Semiconductor Corporation
    Inventors: Seth Kahn, Michael D. McJimsey
  • Patent number: 8018217
    Abstract: A ramp generator is provided to provide a multi-slope ramp signal for a PWM power converter. The ramp generator determines the slope turning points for the multi-slope ramp signal according to the error signal of the PWM power converter and thereby improve the transient response of the PWM power converter. Preferably, the slope turning point of the multi-slope ramp signal varies with the average of the error signal and is thus adaptive to the error signal and thereby the load condition.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: September 13, 2011
    Assignee: Richtek Technology Corp.
    Inventors: An-Tung Chen, Jo-Yu Wang
  • Patent number: 8014172
    Abstract: A resonant mode power converter is controlled with a control unit including a feedback circuit coupled to generate a first current representative of an output of the power converter. A current limiting circuit is coupled to receive the first current and a second current generated in response to a reference voltage. The current limiting circuit is coupled to limit the first current in response to the second current. An oscillator is coupled to receive the first current to generate a control signal having a control frequency in response to the first current. An output voltage of the power converter is controlled in response to the control frequency of the control signal.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: September 6, 2011
    Assignee: Power Integrations, Inc.
    Inventors: Anthony Reinberger, Paul Demone