Patents Examined by Sheela J. Huff
  • Patent number: 11078283
    Abstract: Provided are anti-programmed death-ligand 1 (PD-L1) monoclonal antibodies and related compositions, which may be used in any of a variety of therapeutic methods for the treatment of inflammatory and oncological diseases. Specifically, high affinity, humanized anti-PD-L1 antibodies are provided.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: August 3, 2021
    Assignee: Apexigen, Inc.
    Inventors: Pia Björck, Christine Tan, Erin Filbert, Xiaodong Yang
  • Patent number: 11071756
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: July 27, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Janet Peper, Philipp Wagner, Hans-Georg Rammensee
  • Patent number: 11072658
    Abstract: Provided herein are anti-PD-1/LAG3 bispecific antibodies and antigen-binding fragments. Also provided here are methods and uses of these antibodies and antigen-binding fragments in the treatment of cancer or infectious disease.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: July 27, 2021
    Assignees: MERCK SHARP & DOHME CORP., ZYMEWORKS, INC.
    Inventors: Laurence Fayadat-Dilman, Veronica Juan, Shireen Khan, Shaopeng Huang, Hua Ying, Eric Escobar Cabrera, Genevieve Desjardins
  • Patent number: 11066477
    Abstract: The present invention relates to monoclonal antibodies against MELK. Furthermore, the present invention provides methods for diagnosing MELK-associated diseases using the antibodies, methods for detecting the MELK protein, methods for determining the drug efficacy following treatment with a MELK inhibitor, methods of screening for subjects to whom a MELK inhibitor has a high therapeutic effect, and diagnostic reagents containing the antibodies.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: July 20, 2021
    Assignee: ONCOTHERAPY SCIENCE, INC.
    Inventors: Yosuke Harada, Suyoun Chung, Yusuke Nakamura
  • Patent number: 11065279
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: July 20, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Franziska Hoffgaard, Jens Fritsche, Oliver Schoor, Toni Weinschenk, Daniel Johannes Kowalewski, Chih-Chiang Tsou
  • Patent number: 11065315
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: July 20, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Phillip Mueller, Julia Leibold, Valentina Goldfinger
  • Patent number: 11058727
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: July 13, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Franziska Hoffgaard, Jens Fritsche, Oliver Schoor, Toni Weinschenk, Daniel Johannes Kowalewski, Chih-Chiang Tsou
  • Patent number: 11058754
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: July 13, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Phillip Mueller, Julia Leibold, Valentina Goldfinger
  • Patent number: 11059903
    Abstract: An antibody or antigen-binding portion thereof which binds to PSMA and comprises a heavy chain variable domain comprising the sequences: CDR1: EYTIH (SEQ ID NO: 33) CDR2: NINPNX1GGTTYNQKFED (SEQ ID NO: 34) CDR3: X2-5DY (SEQ ID NO: 35) wherein X1 is N or Q, and X2-5 is YWLF (SEQ ID NO: 39), GWTF (SEQ ID NO: 40) or AWTM (SEQ ID NO: 41), and wherein if X2-5 is GWTF (SEQ ID NO: 40) or AWTM (SEQ ID NO: 41), the amino acid residue at position H94 in the heavy chain variable region, based on Kabat numbering, is G; and if X2-5 is YWLF (SEQ ID NO: 39), the amino acid residue at position H94 in the heavy chain variable region, based on Kabat numbering, is A. The invention also provides compounds that include the antibody or antigen-binding portion thereof, such as conjugates, and their use in the treatment or diagnosis of disease, in particular cancers, particularly prostate cancer.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: July 13, 2021
    Assignee: POLYTHERICS LIMITED
    Inventors: Robert George Edward Holgate, Arron Robert Hearn
  • Patent number: 11053311
    Abstract: The present disclosure provides a human antibody or antigen binding fragment thereof or an antibody construct comprising a human binding domain or antigen binding fragment thereof capable of binding to human CDH19 on the surface of a target cell. The disclosure relates to a nucleic acid sequence encoding the antibody or antigen binding fragment thereof contained in the antibody construct, a vector comprising the nucleic acid sequence and a host cell transformed or transfected with the vector. Furthermore, the disclosure relates to a process for the production of the antibody construct of the disclosure, a medical use or a method of treatment using the antibody construct and a kit comprising the antibody or antigen binding fragment thereof or the antibody construct.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: July 6, 2021
    Assignee: AMGEN INC.
    Inventors: Shouhua Xiao, Zheng Pan, Dineli Wickramasinghe, M. Shawn Jeffries, Chadwick Terence King, Brian Mingtung Chan
  • Patent number: 11052114
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: July 6, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Franziska Hoffgaard, Jens Fritsche, Oliver Schoor, Toni Weinschenk, Daniel Johannes Kowalewski, Chih-Chiang Tsou
  • Patent number: 11052113
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: July 6, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Franziska Hoffgaard, Jens Fritsche, Oliver Schoor, Toni Weinschenk, Daniel Johannes Kowalewski, Chih-Chiang Tsou
  • Patent number: 11053296
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: July 6, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Janet Peper, Kevin Roehle, Philipp Wagner, Hans-Georg Rammensee
  • Patent number: 11045535
    Abstract: Provided herein are consensus amino acid sequences of prostate antigens that are capable of breaking tolerance in a targeted species, including PSA, PSMA, STEAP and PSCA antigens. Also provided are nucleic acid sequences that encode one or more consensus amino acid sequences of prostate antigens PSA, PSMA, STEAP and PSCA, as well as genetic constructs/vectors and vaccines expressing the sequences. Also provided herein are methods for generating an autoimmune response against prostate cancer cells by administering one or more of the vaccines, proteins, and/or nucleic acid sequences that are provided.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: June 29, 2021
    Assignees: The Trustees of the University of Pennsylvania, Inovio Pharmaceuticals, Inc.
    Inventors: David Weiner, Jian Yan, Bernadette Ferraro, Niranjan Y. Sardesai, Mathura P. Ramanathan
  • Patent number: 11046778
    Abstract: The present invention provides a cancer microenvironment-targeting anti-podocalyxin antibody or antigen binding fragment thereof.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: June 29, 2021
    Assignees: TOHOKU UNIVERSITY, ZENOAQ RESOURCE CO., LTD.
    Inventors: Yukinari Kato, Mika Kato, Satoshi Ogasawara
  • Patent number: 11040069
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: June 22, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Franziska Hoffgaard, Jens Fritsche, Oliver Schoor, Toni Weinschenk, Daniel Johannes Kowalewski, Chih-Chiang Tsou
  • Patent number: 11033583
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: June 15, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Franziska Hoffgaard, Jens Fritsche, Oliver Schoor, Toni Weinschenk, Daniel Johannes Kowalewski, Chih-Chiang Tsou
  • Patent number: 11033585
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: June 15, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Franziska Hoffgaard, Jens Fritsche, Oliver Schoor, Toni Weinschenk, Daniel Johannes Kowalewski, Chih-Chiang Tsou
  • Patent number: 11033564
    Abstract: Therapeutic combinations of immunoconjugates that bind to FOLR1 (e.g., IMGN853) with anti-VEGF agents (e.g., bevacizumab), a platinum-based agent, and/or doxorubicin are provided. Methods of administering the combinations to treat cancers, e.g., ovarian cancers, with greater clinical efficacy and/or decreased toxicity are also provided.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: June 15, 2021
    Assignee: ImmunoGen, Inc.
    Inventors: Jose Ponte, Jan Pinkas, Rodrigo R. Ruiz-Soto
  • Patent number: 11026977
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: June 8, 2021
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Franziska Hoffgaard, Jens Fritsche, Oliver Schoor, Toni Weinschenk, Daniel Johannes Kowalewski, Chih-Chiang Tsou