Abstract: A grid clustering-based system for locating abnormal area of solder paste printing and a method thereof are disclosed. In the system, an analysis device divides circuit board size information to generate divided grids based on grid size information, when a total number of at least one bad solder joint of one of the divided grids is determined to be higher than or equal to a density threshold value, the analysis device sets the one of divided grids as a high dense grid, the analysis device then integrates the divided grids, which are high dense grids and interconnected to each other, as a high-dense bad solder joint area. Therefore, the technical effect of integrating high dense areas of bad solder joint to locate the bad solder joint can be achieved.
Abstract: Disclosed is a method for generating high resolution point cloud data for electro-anatomical mapping comprising receiving sparsely measured point cloud data having a plurality of data points. Surface mesh data comprising mesh points defining triangles on a myocardial surface is generated. The point cloud data is mapped to the surface mesh data. For each point of the surface mesh data that cannot be mapped to the point cloud data because there is a missing data point in point cloud data, an interpolation operation is performed based on the point cloud data within the neighbourhood of the point to generate a value for the missing data point. The interpolation operation is repeated N times. For every repetition, a difference between the value for the missing data point generated from the current iteration and the value for the missing data point generated from the immediately preceding iteration is compared, until the difference is below a threshold.
Abstract: A system and method for assessing an intravenous catheter site is described in embodiments herein. An application accessible on a mobile device may be used to take calibrated photographs of an intravenous catheter site. The resulting calibrated image may be compared to previously taken calibrated images to determine a complication. Success of treatments to the complication may be tracked and the patient's electronic medical record may be updated.
Abstract: Presented herein are systems and methods that provide for improved computer aided display and analysis of nuclear medicine images. In particular, in certain embodiments, the systems and methods described herein provide improvements to several image processing steps used for automated analysis of bone scan images for assessing cancer status of a patient. For example, improved approaches for image segmentation, hotspot detection, automated classification of hotspots as representing metastases, and computation of risk indices such as bone scan index (BSI) values are provided.
Type:
Grant
Filed:
April 23, 2020
Date of Patent:
December 27, 2022
Assignees:
Progenies Pharmaceuticals, Inc., EXINI Diagnostics AB
Inventors:
Karl Vilhelm Sjöstrand, Jens Filip Andreas Richter, Lars Edenbrandt
Abstract: Example embodiments allow for fast, efficient motion-magnification of video streams by decomposing image frames of the video stream into local phase information at multiple spatial scales and/or orientations. The phase information for each image frame is then scaled to magnify local motion and the scaled phase information is transformed back into image frames to generate a motion-magnified video stream. Scaling of the phase information can include temporal filtering of the phase information across image frames, for example, to magnify motion at a particular frequency. In some embodiments, temporal filtering of phase information at a frequency of breathing, cardiovascular pulse, or some other process of interest allows for motion-magnification of motions within the video stream corresponding to the breathing or the other particular process of interest. The phase information can also be used to determine time-varying motion signals corresponding to motions of interest within the video stream.
Type:
Grant
Filed:
June 20, 2019
Date of Patent:
December 13, 2022
Assignee:
Google LLC
Inventors:
Michael Rubinstein, Derek Debusschere, Mike Krainin, Ce Liu
Abstract: A radiological imaging device includes a gantry configured to perform radiological imaging and defining an area of analysis, a bearing structure supporting the gantry, and a robotic arm configured to move a medical instrument with respect to the area of analysis. The bearing structure includes a guide defining a translation axis substantially parallel to a longitudinal axis of the device, a first carriage connected to the gantry, and a second carriage connected to said robotic arm, the first and second carriages moving independently of each other, said gantry and said robotic arm configured to move along said translation axis.
Type:
Grant
Filed:
September 14, 2020
Date of Patent:
November 29, 2022
Assignee:
EPICA INTERNATIONAL, INC.
Inventors:
Damiano Fortuna, Leonardo Manetti, Denis De Micheli
Abstract: Configurations are disclosed for presenting virtual reality and augmented reality experiences to users. The system may comprise an image capturing device to capture one or more images, the one or more images corresponding to a field of the view of a user of a head-mounted augmented reality device, and a processor communicatively coupled to the image capturing device to extract a set of map points from the set of images, to identify a set of sparse points and a set of dense points from the extracted set of map points, and to perform a normalization on the set of map points.
Type:
Grant
Filed:
October 19, 2020
Date of Patent:
November 22, 2022
Assignee:
Magic Leap, Inc.
Inventors:
Gary R. Bradski, Samuel A. Miller, Rony Abovitz
Abstract: A magnetic stimulation system may include first and second subsystems. The first subsystem may include a first stimulator, a first coil, and a first processor configured to determine stimulation parameter data for a subject. The second subsystem may include a second stimulator, a headpiece including an identifier and a second coil mounted to a headpiece body at a fixed location, an image recording device, and a second processor configured to: receive first image data for one or more first images of the subject and headpiece; receive, from the image recording device, second image data for one or more second images of the subject and headpiece; determine, using the first and second image data, that the stimulation parameter data corresponds to the subject; determine, using the second image data, that the headpiece corresponds to the subject; and determine, using the second image data, that the headpiece is at a pre-determined position.
Abstract: A system and method for camera-based stress determination. The method includes: determining a plurality of regions-of-interest (ROIs) of a body part; determining a set of bitplanes in a captured image sequence for each ROI that represent HC changes using a trained machine learning model, the machine learning model trained with a hemoglobin concentration (HC) changes training set, the HC changes training set trained using bitplanes from previously captured image sequences of other human individuals as input and received cardiovascular data as targets; determining an HC change signal for each of the ROIs based on changes in the set of determined bitplanes; for each ROI, determining intervals between heartbeats based on peaks in the HC change signal; determining heart rate variability using the intervals between heartbeats; determining a stress level using at least one determination of a standard deviation of the heart rate variability; and outputting the stress level.
Abstract: In one example, a distance sensor includes a camera to capture images of a field of view, a plurality of light sources arranged around a lens of the camera, wherein each light source of the plurality of light sources is configured to project a plurality of beams of light into the field of view, and wherein the plurality of beams of light creates a pattern of projection artifacts in the field of view that is visible to a detector of the camera, a baffle attached to a first light source of the plurality of light sources, wherein the baffle is positioned to limit a fan angle of a plurality of beams of light that is projected by the first light source, and a processing system to calculate a distance from the distance sensor to an object in the field of view, based on an analysis of the images.
Abstract: Content is identified using watermarking and/or other content recognition combined with contextual metadata, which facilitates identification and correlation with other content and metadata when it is posted to a network.
Abstract: According to a first aspect, the present disclosure relates to a digital holography device (100) for full-field blood flow imaging of ocular vessels of a field of view of a layer (11) of the eye (10). The device comprises an optical source (101) configured for the generation of an illuminating beam (Eobj) and a reference beam (ELO), and a detector (135) configured to acquire a plurality of interferograms (I(x,y,t)) wherein an interferogram is defined as the signal resulting from the interference between the said reference beam (ELO) and a part of said illuminating beam (Eobj) that is backscattered from said layer (11).
Type:
Grant
Filed:
December 30, 2019
Date of Patent:
October 4, 2022
Assignees:
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), ECOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES DE LA VILLE DE PARIS
Abstract: A computing system is configured to train an object classifier. Monocular image data and ground-truth data are received for a scene. Geometric context is determined including a three-dimensional camera position relative to a fixed plane. Regions of interest (RoI) and a set of potential occluders are identified within the image data. For each potential occluder, an occlusion zone is projected onto the fixed plane in three-dimensions. A set of occluded RoIs on the fixed plane are generated for each occlusion zone. Each occluded RoI is projected back to the image data in two-dimensions. The classifier is trained by minimizing a loss function generated by inputting information regarding the RoIs and the occluded RoIs into the classifier, and by minimizing location errors of each RoI and each occluded RoI of the set on the fixed plane based on the ground-truth data. The trained classifier is then output for object detection.
Abstract: In one example, a method for inserting a digital watermark in a signal includes obtaining the signal comprising a plurality of frames, inserting a first digital watermark in a first frame of the plurality of frames, inserting a second digital watermark in a second frame of the plurality of frames, wherein the second digital watermark differs from the first digital watermark in at least one way selected from a group of: a location within a respective frame, a number of bits, a pattern of bits, and a number of bits of a noise, and outputting a watermarked signal including the first digital watermark in the first frame and the second digital watermark in the second frame.
Type:
Grant
Filed:
May 21, 2020
Date of Patent:
September 13, 2022
Assignee:
AT&T Intellectual Property I, L.P.
Inventors:
James Gordon Beattie, Jr., Haywood S. Peitzer
Abstract: The present disclosure is directed to a system for calibrating cameras with a fixed focal point. In particular, a camera calibration system comprising one or more computing devices can project a plurality of fiducial markers on a target surface using the plurality of collimators. The camera calibration system can capture, using the camera, a plurality of images of the target surface with the camera, wherein the camera is rotated between each captured image in the plurality of images. The camera calibration system can compare the plurality of images with a ground truth projection. The camera calibration system can generate calibration data based on the comparison of the plurality of images with the ground truth projection. The camera calibration system can store the calibration data for use in rectifying the camera.
Type:
Grant
Filed:
April 21, 2020
Date of Patent:
August 23, 2022
Assignee:
UATC, LLC
Inventors:
Zhijia Yuan, Randyll Mark Cash, II, Danny Hongyu Lu, David Golladay, Michael Vinent Praskovich, Benjamin David Himes, Armen Berberian
Abstract: An image processing apparatus acquires a first image which captures a scene including an object from a first viewpoint position and a second image which captures a scene including the object from a second viewpoint position, and associates a coordinate position corresponding to a position of a feature of the object on the first image with a coordinate position corresponding to a position of a feature of the object on the second image. The image processing apparatus determines a partial region in the second image corresponding to a give region in the first image based on the association, generates a synthesized image by replacing an image of the given region using an image of the determined partial region, and superimposing variation data on the synthesized image.
Abstract: An apparatus for producing a fundus image includes: a processor and a memory; an illumination component including a light source and operatively coupled to the processor; a camera including a lens and operatively coupled to the processor, wherein the memory stores instructions that, when executed by the processor, cause the apparatus to capture fundus images and provide controls for re-imaging the fundus.
Type:
Grant
Filed:
June 19, 2020
Date of Patent:
August 2, 2022
Assignee:
Welch Allyn, Inc.
Inventors:
Richard M. Farchione, Kristen L. Stebbins, Corrie A. Baum, Thomas A. Myers
Abstract: This disclosure relates to an X-ray system for obtaining referencing information in the form of a coordinate transformation between a first volume and a second volume, with the volumes partially overlapping. In this case two partially overlapping subareas of an extended object having a continuous distribution of a physical size are discretely sampled with a measuring apparatus; the volumes are reconstructed and the overlapping volumes are iteratively changed, wherein a bandpass filter is applied to the overlapping volumes, where said bandpass filter changes the Fourier domain representation of the overlapping volumes. The filtered overlapping volumes, in which the artifacts, induced by the discrete sampling, are matched, are compared by means of a measure of similarity, which is iteratively maximized by means of mathematical optimization.
Abstract: System and techniques for computer vision assisted item search are described herein. A composite image, including visual data and depth data, may be obtained. The composite image may be filtered to isolate a clothing article represented in the composite image. A classifier may be applied to the depth data to produce a set of clothing attributes for the clothing article. The clothing attributes may then be provided to a remote device.
Abstract: A greenhouse information automatic monitoring method, adopting a multi-sensor system, using binocular vision multi-function cameras combining with a laser ranging sensor and an infrared temperature measuring sensor, realizing online patrol monitoring of greenhouse crop comprehensive information of image and infrared temperature characteristics of plant nutrition, water, pest and disease damage as well as plant crown width, plant height, fruit and growth characteristics. The multi-sensor system is mounted on a suspension slide platform and combines with a lifting mechanism and an electric control rotation pan-tilt, such that not only accurate positioning and stationary point detection in the detection travelling direction can be realized, but also multi-sensor information patrol detection at different detection distances, different top view fields and different detection angles is realized.