Patents Examined by Stacy B. Chen
  • Patent number: 11872277
    Abstract: The present invention provides novel engineered Ebolavirus GP proteins and polypeptides, scaffolded vaccine compositions that display the engineered proteins, and polynucleotides encoding the engineered proteins and scaffolded vaccine compositions. The invention also provides methods of using such engineered Ebolavirus GP proteins and vaccine compositions in various therapeutic applications, e.g., for preventing or treating Ebolavirus infections.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: January 16, 2024
    Assignee: The Scripps Research Institute
    Inventors: Linling He, Jiang Zhu, Anshul Chaudhary, Ian Wilson
  • Patent number: 11844832
    Abstract: Provided are methods for rapidly inactivating a pathogen, or for producing a vaccine composition containing an inactivated noninfectious pathogen having retained antigenicity and/or immunogenicity, comprising exposing the pathogen to a chemical inactivating agent (e.g., one or more chemical oxidizing, alkylating or crosslinking agents) in the presence of inorganic polyatomic oxyanions in an amount and for a time sufficient to render the pathogen noninfectious while enhancing retention of pathogen antigenicity and/or immunogenicity relative to that retained by contacting the pathogen with the chemical inactivating agent alone. The methods are broadly applicable to pathogens having RNA or DNA genomes (e.g., including viruses, bacteria, fungi, and parasites).
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: December 19, 2023
    Assignee: Najit Technologies, Inc.
    Inventors: Ian J. Amanna, Elizabeth A. Poore
  • Patent number: 11845777
    Abstract: The present invention provides redesigned soluble coronavirus S protein derived immunogens that are stabilized via specific modifications in the wildtype soluble S sequences. Also provided in the invention are nanoparticle vaccines that contain the redesigned soluble S immunogens displayed on self-assembling nanoparticles. Polynucleotide sequences encoding the redesigned immunogens and the nanoparticle vaccines are also provided in the invention. The invention further provides methods of using the vaccine compositions in various therapeutic applications, e.g., for preventing or treating coronaviral infections.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: December 19, 2023
    Assignee: The Scripps Research Institute
    Inventors: Linling He, Jiang Zhu, Ian A. Wilson
  • Patent number: 11827675
    Abstract: The present invention includes nucleic acids, proteins, Chikungunya virus (CHIKV) Virus Like Particles (VLP), and methods of making a Chikungunya virus (CHIKV) Virus Like Particles (VLP) comprising: inserting one or more nucleic acids into a lentiviral backbone, wherein the nucleic acid encodes one or more Chikungunya virus (CHIKV) proteins; transfecting the one or more nucleic acids into the lentiviral backbone into a cell line; culturing the transfected cell line under conditions in which the Chikungunya virus (CHIKV) Virus Like Particles (VLP) are released from the cell line; and isolating the Chikungunya virus (CHIKV) Virus Like Particles (VLP) from a culture supernatant.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: November 28, 2023
    Assignee: Texas Tech University System
    Inventors: Himanshu Garg, Anjali Joshi
  • Patent number: 11807849
    Abstract: The disclosure relates, in some aspects, to compositions and methods for treatment of diseases associated with aberrant lysosomal function, for example Parkinson's disease and Gaucher disease. In some embodiments, the disclosure provides expression constructs comprising a transgene encoding one or more inhibitory nucleic acids targeting SCNA or a portion thereof, TMEM106B or a portion thereof, or any combination of the foregoing. In some embodiments, the disclosure provides methods of Parkinson's disease by administering such expression constructs to a subject in need thereof.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: November 7, 2023
    Assignee: Prevail Therapeutics, Inc.
    Inventors: Asa Abeliovich, Laura Heckman, Herve Rhinn
  • Patent number: 11802146
    Abstract: This disclosure relates to compositions and methods for treating and preventing chikungunya virus infection by delivering polynucleotides encoding anti-chikungunya virus antibodies to a subject. Compositions and treatments provided herein include one or more polynucleotides having an open reading frame encoding an anti-chikungunya virus antibody heavy chain or fragment thereof and/or an anti-chikungunya virus antibody light chain or fragment thereof. Methods for preparing and using such treatments are also provided.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: October 31, 2023
    Assignees: ModernaTX, Inc., Vanderbilt University
    Inventors: Sunny Himansu, James E. Crowe, Jr., Giuseppe Ciaramella
  • Patent number: 11786589
    Abstract: A vaccine composition and method of vaccination are provided useful for immunizing a subject against a rotavirus. The vaccines include rotavirus strains CDC-9 and CDC-66, fragments thereof, homologues thereof, or combinations thereof. Inventive vaccines may include a fragment of CDC-9, CDC-66, homologues thereof, or combinations thereof. Methods of inducing an immunological response are provided by administering an inventive vaccine.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: October 17, 2023
    Assignee: The United States of America, as Represented by the Secretary, Department of Health and Human Services
    Inventors: Baoming Jiang, Roger I. Glass, Yuhuan Wang, Jon Gentsch
  • Patent number: 11786591
    Abstract: Metapneumovirus (MPV) F proteins stabilized in a prefusion conformation, nucleic acid molecules and vectors encoding these proteins, and methods of their use and production are disclosed. In several embodiments, the MPV F proteins and/or nucleic acid molecules can be used to generate an immune response to MPV in a subject. In additional embodiments, the therapeutically effective amount of the MPV F ectodomain trimers and/or nucleic acid molecules can be administered to a subject in a method of treating or preventing MPV infection.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: October 17, 2023
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Institute for Research in Biomedicine
    Inventors: Peter Kwong, Michael Gordon Joyce, Baoshan Zhang, Yongping Yang, Peter Collins, Ursula Buchholz, Davide Corti, Antonio Lanzavecchia, Guillaume Stewart-Jones
  • Patent number: 11779640
    Abstract: The present invention relates to a lentiviral vector-based Japanese encephalitis (JE) immunogenic composition. The present invention is directed to a recombinant lentiviral vector expressing the precursor of membrane (prM) and the envelope (E) protein, in particular glycoprotein of a Japanese encephalitis virus (JEV) or immunogenic fragments thereof. The present invention also provides cells expressing the lentiviral vector, uses and methods to prevent a JEV infection in a mammalian host, especially in a human or an animal host, in particular a pig or a piglet, preferably a domestic pig or a domestic piglet.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: October 10, 2023
    Assignees: INSTITUT PASTEUR, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Pierre Charneau, Philippe Despres, Melissanne De Wispelaere, Philippe Souque, Marie-Pascale Frenkiel
  • Patent number: 11767540
    Abstract: In a first aspect, the present invention relates to a mutated adeno-associated virus (AAV) capsid protein or fragment thereof wherein a substitution of a wild type non-cysteine amino acid into a cysteine is present whereby the wild type non-cysteine amino acid is exposed on the outer surface of the capsid of an AAV particle. In a further aspect, a mutated AAV particle comprising the AAV capsid protein or fragment thereof according to the present invention is provided. In addition, a nucleic acid encoding the AAV capsid protein according to the present invention is identified together with a corresponding nucleic acid vector, in particular, a plasmid or a gene string. In addition, a host cell containing the nucleic acid vector or the nucleic acid according to the present invention as well as a composition comprising at least an infectious (transducing) AAV particle containing a mutated AAV capsid protein as defined herein together with a non-infectious AAV particle containing a mutated AAV capsid protein as e.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: September 26, 2023
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEW ANDTEN FORSCHUNG E.V.
    Inventors: Hildegard Büning, Anke Huber, Luca Perabo
  • Patent number: 11753627
    Abstract: The invention relates to a dengue virus tetravalent vaccine containing a common 30 nucleotide deletion (?30) in the 3?-untranslated region of the genome of dengue virus serotypes 1, 2, 3, and 4, or antigenic chimeric dengue viruses of serotypes 1, 2, 3, and 4.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: September 12, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Stephen S. Whitehead, Brian R. Murphy, Lewis Markoff, Barry Falgout, Joseph Blaney, Kathryn Hanley, Ching-Juh Lai
  • Patent number: 11738079
    Abstract: The present disclosure relates to vaccines and methods for the prevention and treatment of Zika virus infection. Particularly, the present disclosure relates to viral and DNA vaccine vectors which includes or encode for secreted immunogenic peptides of NS1 that eliciting a protective immune response and prevent Zika virus infection of a subject.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: August 29, 2023
    Inventors: Eric James Gowans, Branka Grubor-Bauk, Danushka Wijesundara
  • Patent number: 11739348
    Abstract: Embodiments disclosed herein provide compositions, methods, and uses for recombinant vectors encoding Zika virus (ZIKV) protein subunits, and immunogenic compositions thereof. Certain embodiments provide recombinant vectors encoding ZIKV nonstructural protein 1 (NS 1), and optionally, ZIKV envelope (E) protein and premembrane (prM) protein. Other embodiments provide expression cassettes comprising a promoter operably linked to a polynucleotide that encodes the ZIKV NS 1 protein, and optionally ZIKV E and prM proteins. In some embodiments, the disclosed expression cassettes can be incorporated into a vector to produce a recombinant vector. Also provided are immunogenic compositions comprising one or more recombinant vectors described herein, and methods for inducing an immune response against ZIKV in a subject comprising administering to the subject an immunologically effective dose of an immunogenic composition of the present disclosure.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: August 29, 2023
    Assignees: The Research Institute at Nationwide Children's Hospital, Ohio State Innovation Foundation
    Inventors: Mark Peeples, Jianrong Li, Prosper N. Boyaka, Anzhong Li, Mijia Lu, Yuanmei Ma
  • Patent number: 11730804
    Abstract: The present disclosure relates generally to the field of molecular virology, and particularly relates to nucleic acid molecules encoding a modified alphavirus virus viral genome or self-replicating RNA (srRNA) construct, recombinant cells and pharmaceutical compositions containing the same, as well as the use of such nucleic acid molecules, recombinant cells and compositions for production of desired products in cell cultures or in a living body. Also provided are methods for eliciting an immune response in a subject in need thereof, as well as methods for preventing and/or treating rabies virus infection.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: August 22, 2023
    Assignee: Replicate Bioscience, Inc.
    Inventors: Nathaniel Stephen Wang, Shigeki Joseph Miyake-Stoner, Parinaz Aliahmad, Andrew Geall
  • Patent number: 11713469
    Abstract: Provided herein are adenoviral vectors comprising nucleotide sequences encoding a Zika virus M and Env antigen, wherein the nucleotide sequence encoding the Zika virus M and Env antigen is operably linked to a cytomegalovirus (CMV) promoter comprising at least one tetracycline operator (TetO) motif. Also provided herein are pharmaceutical compositions comprising the adenoviral vectors, methods of producing the adenoviral vectors, methods of preventing Zika virus or the progression of Zika virus in a subject in need thereof, and kits comprising the adenoviral vectors and host cells.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: August 1, 2023
    Assignee: Janssen Vaccines & Prevention B.V.
    Inventor: Taco Gilles Uil
  • Patent number: 11707504
    Abstract: Fusion peptide inhibitors of human coronavirus 229E are provided. The fusion peptide inhibitors of HCoV-229E include peptide #1 (SEQ ID NO: 1: SLTQINTTLLDLTYEMLSLQQVVKALNESYIDLKEL), peptide #4 (SEQ ID NO: 2: SLTQINWTLLDLTYEMESLQQVVKALNESYIDLKEL), and peptide #11 (SEQ ID NO: 11: SLTQINTTLLDLEYEMRSLEEVVKKLNESYIDLKEL. The fusion peptide inhibitors of HCoV-229E may be administered to a subject in need thereof to inhibit or prevent HCoV-229E cellular entry or infection with HCoV-229E. The fusion peptide inhibitors of HCoV-229E may also be used in HCoV-229E inhibition assays.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: July 25, 2023
    Assignee: KING FAISAL UNIVERSITY
    Inventors: Mahmoud Kandeel Elsayed, Abdullah I. Al-Mubarak
  • Patent number: 11709116
    Abstract: A kit and method for flow cytometry include a liquid dye concentrate for fluorescent staining of virus-size particles with a plurality of fluorogenic dyes in a liquid medium. The liquid dye concentrate includes a plurality of fluorogenic dyes and one or both of (i) the liquid medium comprising a liquid mixture including water and liquid phase organic material and (ii) disaccharide dissolved in the liquid medium.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: July 25, 2023
    Assignee: SARTORIUS BIOANALYTICAL INSTRUMENTS, INC.
    Inventors: Rebecca K. Montange, Jeffrey W. Steaffens
  • Patent number: 11707516
    Abstract: Provided is a method for producing an artificial recombinant virus of the family Reoviridae, the method comprising the steps of: (1) introducing a FAST protein expression vector and/or a capping enzyme expression vector into host cells; (2) introducing a vector containing expression cassettes for individual RNA genome segments of a virus or introducing a set of single-stranded RNA transcripts from the expression cassettes into host cells; and (3) culturing the host cells. The method of the present invention allows more efficient production of an artificial recombinant virus of the family Reoviridae as compared with conventional methods and allows artificial recombinant rotavirus production without using a helper virus.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: July 25, 2023
    Assignee: Osaka University
    Inventors: Takeshi Kobayashi, Yuta Kanai
  • Patent number: 11701423
    Abstract: In one aspect, the present disclosure is directed to a method for preventing or treating a coronavirus infection in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of a hyperimmunized egg product obtained from an egg-producing animal, thereby preventing or treating coronavirus infection in the subject, wherein the hyperimmunized egg product comprises a therapeutically effective amount of one or more antibodies to the coronavirus.
    Type: Grant
    Filed: March 11, 2022
    Date of Patent: July 18, 2023
    Assignee: LAY SCIENCES, INC.
    Inventors: Subramanian V. Iyer, Satishchandran Chandrasekhar, Uday Saxena, Gopi Kadiyala
  • Patent number: 11702453
    Abstract: The disclosure provides materials in the form of flavivirus variants that each encode a Non-Structural Protein-1 (NS1) variant, wherein the coding region is a chimera of at least two different NS1 coding regions, or wherein the coding region has at least one mutation in a codon of a canonical Asn-Xxx-Ser/Thr N-linked glycosylation site, wherein Asn is asparagine, Xxx is any amino acid, and Ser/Thr is either serine or threonine, or wherein the coding region is both a chimera and has at least one mutation in a codon of a canonical N-liked glycosylation site, wherein Asn is asparagine, Xxx is any amino acid, and Ser/Thr is either serine or threonine. The disclosure also provides methods of using such flavivirus variants to inhibit the transmission of infectious flavivirus.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: July 18, 2023
    Assignee: REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Andrew Tai, David Lin