Patents Examined by Stanley Silverman
  • Patent number: 8980135
    Abstract: An object of the present invention is to provide an infrared-shielding nanoparticle dispersion that has a property whereby visible light is adequately transmitted, and light in the near-infrared region is adequately shielded; an infrared-shielding body manufactured using the infrared-shielding nanoparticle dispersion; a method for manufacturing infrared-shielding nanoparticles that are used in the infrared-shielding nanoparticle dispersion; and infrared-shielding nanoparticles manufactured using the method for manufacturing infrared-shielding nanoparticles.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: March 17, 2015
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Hiromitsu Takeda, Kenji Adachi
  • Patent number: 8975395
    Abstract: The present invention relates to a material notably adapted for the extraction of metal cations in an aqueous medium, comprising a solid support on which are attached polyazacycloalkane compounds having a ring including at least 4 nitrogen atoms, and wherein the nitrogen atoms of the ring are substituted with coordinating groups, which each are independently: a coordinating group of formula: —(CH2)n—C(?O)—NR1R2 ?or else a both coordinating and binding group, fitting the formula: —(CH2)p—C(?O)—NR3-(A)-[support]. The invention also relates to methods for preparing the aforementioned materials and to different uses thereof, notably for the extraction of Pb2+ cations in an aqueous medium.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: March 10, 2015
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Michel Meyer, Arnaud Bucaille, Francois Cuenot, Franck Denat, Frédéric Boschetti, Roger Guilard
  • Patent number: 8974757
    Abstract: Methods and systems for sequestering carbon dioxide and generating hydrogen are disclosed. In some embodiments, the methods include the following: dissolving an iron based material that includes a carbonate-forming element into a solution including the carbonate-forming element and iron; increasing a pH of the solution to cause precipitation of iron oxide from the solution thereby generating a first source of Fe2O3; reacting the carbonate-forming element in the solution with a first source of carbon dioxide to produce a carbonate thereby sequestering the carbon dioxide; oxidizing the first source of Fe2O3 with a carbonaceous fuel thereby generating a second source of carbon dioxide and iron; and oxidizing the iron with steam thereby generating hydrogen and an iron oxide. Some embodiments include producing iron-based catalysts.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: March 10, 2015
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Ah-Hyung Alissa Park, Liang-Shih Fan, Hyung Ray Kim
  • Patent number: 8968694
    Abstract: A method for preparing high purity ammonia is provided, which comprises the following three steps of: (1) obtaining the required feed gases (i.e., hydrogen-nitrogen gas mixture) by catalytic cracking ammonia; (2) purifying the hydrogen-nitrogen gas mixture; and (3) synthesizing high purity ammonia by using the hydrogen- nitrogen gas mixture with high purity. In the provided method, the obtained ammonia with undesired purity is fed back to an ammonia catalytic cracking unit. The whole production system is a closed system without any discharging of ammonia and thus is environment friendly. Each step of the method can reduce cost.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: March 3, 2015
    Assignee: Hunan HiEND Products Co., Ltd.
    Inventors: Jianren Bao, Lingqi Zeng, Zehua Zhu
  • Patent number: 8968609
    Abstract: A contactless power transfer system is proposed. The power transfer system comprises a field-focusing element comprising a dielectric material. The dielectric material comprises a composition that is selected from the family of (Ba,Sr)TiO3 or CaCu3Ti4O12. The compositions of the (Ba,Sr)TiO3 include the materials such as Ca1-x-yBaxSryTi1-zCrzO3-?Np, wherein 0<x<1; 0<y<1; 0?z?0.01; 0???1; and 0?p?1. The compositions of the CaCu3Ti4O12 include the materials such as Ca1-x-yBaxSry (Ca1-zCuz)Cu2Ti4-?Al?O12-0.5?, wherein 0?x<0.5; 0?y<0.5; 0?z?1; and 0???0.1.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: March 3, 2015
    Assignee: General Electric Company
    Inventors: Kalaga Murali Krishna, Jay Chakraborty, Lohit Matani, Adnan Kutubuddin Bohori, Suma Memana Narayana Bhat, Somakumar Ramachandrapanicker
  • Patent number: 8968603
    Abstract: A dielectric material is provided. The material includes Ca1-x-yBaxSryTi1 -zCrzO3-?Ap, wherein A is nitrogen, fluorine, or combinations thereof; x and y can vary between the value of zero and one such that 0<x<1 and 0<y<1; z can vary between the value of zero and 0.01 such that 0?z?0.01; and ? and p can vary between the value of zero and one such that 0???1 and 0?p?1, with a proviso that z and p are not simultaneously zero. A dielectric component including the dielectric material and a system including the dielectric component are provided.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: March 3, 2015
    Assignee: General Electric Company
    Inventors: Kalaga Murali Krishna, Lohit Matani
  • Patent number: 8969239
    Abstract: A method of hydroprocessing a heavy hydrocarbon feedstock using a hydroprocessing catalyst having specific properties making it effective in the hydroconversion of at least a portion of the heavy hydrocarbon feedstock to lighter hydrocarbons. The hydroprocessing catalyst comprises a Group VIB metal component (e.g., Cr, Mo, and W), a Group VIII metal component (e.g., Ni and Co) and, optionally, a potassium metal component that are supported on a support material comprising alumina. The alumina has novel physical properties that, in combination with the catalytic components, provide for the hydroprocessing catalyst. The hydroprocessing catalyst is particularly effective in the conversion of the heavy hydrocarbon feedstock. The alumina is characterized as having a high pore volume and a high surface area with a large proportion of the pore volume being present in the pores within a narrow pore diameter distribution about a narrowly defined range of median pore diameters.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: March 3, 2015
    Assignee: Shell Oil Company
    Inventors: Josiane Marie-Rose Ginestra, Russell Craig Ackerman, Christian Gabriel Michel
  • Patent number: 8961819
    Abstract: Disclosed herein provide compositions and hydrogen release methods for a high-capacity complex hydrogen storage material. The hydrogen storage material is mainly composed of metal borohydride and NH3. The invention advantageously adopt ammonia, one cheap and easily supplied material with high hydrogen content (17.6 wt %), as one of the hydrogen source, offering a safe and efficient way to store hydrogen and release hydrogen. Furthermore, the hydrogen storage material can be further catalyzed by a transition metal catalyst to improve the dehydrogenation kinetics. With the addition of catalyst, 0.2-10 equiv. H2 could be evolved at ?100˜600° C., which might be applied on vehicles which are fueled by hybrid or fuel cell.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: February 24, 2015
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Ping Chen, Xueli Zheng, Hailiang Chu, Zhitao Xiong, Guotao Wu
  • Patent number: 8961921
    Abstract: A method for producing a ferrate solution by producing a ferrate intermediate material and then combining the intermediate material with a halogen or ozone solution.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: February 24, 2015
    Assignee: Florida Institute of Technology
    Inventor: Virender K. Sharma
  • Patent number: 8965469
    Abstract: Disclosed are an oxide superconductor tape and a method of manufacturing the oxide superconductor tape capable of improving the length and characteristics of superconductor tape and obtaining stabilized characteristics across the entire length thereof. A Y-class superconductor tape (10), as an oxide superconductor tape, comprises a tape (13) further comprising a tape-shaped non-oriented metallic substrate (11), and a first buffer layer (sheet layer) (12) that is formed by IBAD upon the tape-shaped non-oriented metallic substrate (11); and a second buffer layer (gap layer) (14), further comprising a lateral face portion (14a) that is extended to the lateral faces of the first buffer layer (sheet layer) (12) upon the tape (13) by RTR RF-magnetron sputtering.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: February 24, 2015
    Assignee: SWCC Show Cable Systems Co., Ltd.
    Inventors: Tatsuhisa Nakanishi, Yuji Aoki, Tsutomu Koizumi, Atsushi Kaneko, Takayo Hasegawa
  • Patent number: 8961829
    Abstract: The invention relates to a process of making a syngas mixture containing hydrogen, carbon monoxide and carbon dioxide, comprising a step of contacting a gaseous feed mixture containing carbon dioxide and hydrogen with a catalyst, which catalyst substantially consists of Mn oxide and an oxide of at least one member selected from the group consisting of Cr, Ni, La, Ce, W, and Pt. This process enables hydrogenation of carbon dioxide into carbon monoxide with high selectivity, and good catalyst stability over time and under variations in processing conditions. The process can be applied separately, but can also be integrated with other processes, both up-stream and/or down-stream; like methane reforming or other synthesis processes for making products like alkanes, aldehydes, or alcohols.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: February 24, 2015
    Assignee: Saudi Basic Industries Corporation
    Inventors: Agaddin M. Kh. Mamedov, Abdulaziz A. M. Al-Jodai, Ijaz C. Ahmed, Mubarak Bashir
  • Patent number: 8961168
    Abstract: The present invention is a means of starting a controlled combustion reaction by introducing sodium borohydride or similar chemical to a liquid or gelatinous fuel. The present invention is also a device for transferring heat having a thermal conductor connected to a catalyst such that the thermal conductor is positioned within a liquid or gelatinous fuel held within a fuel container.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: February 24, 2015
    Assignee: Global Heating Technologies, GmbH
    Inventors: Lawrence Weber, Giampaolo Vacca, Jeff Poston, Pavlo Bagriy
  • Patent number: 8951492
    Abstract: Disclosed are methods and apparatus for providing an ammonia feed for a low-temperature process. The process includes two defined stages, gasification and hydrolysis. In a first stage thermal reactor, an aqueous urea solution is fed to a gasification chamber and heated gases are controlled in response to demand from a low temperature process requiring ammonia. The heated gases and aqueous urea are introduced into the gasification chamber upstream to fully gasify the solution of aqueous urea to a first stage gas stream comprising ammonia and isocyanic acid. The first stage gas stream is withdrawn and maintained hot enough to prevent solids formation. All amounts of urea feed, water and heated gases fed into the first stage thermal reactor are monitored and adjusted as necessary to achieve efficient hydrolysis in the second stage hydrolysis reactor. The second stage gas stream is withdrawn from the second stage reactor responsive to demand from a low temperature process requiring ammonia.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: February 10, 2015
    Assignee: Fuel Tech, Inc.
    Inventors: William H. Sun, John M. Boyle, Paul G. Carmignani, Scott M. Mayhew
  • Patent number: 8951497
    Abstract: In the present invention, a method and apparatus for producing hydrogen by thermochemical water splitting are provided. The method for producing hydrogen of the present invention includes a reduction step of heating a high oxidation state redox material in an inert atmosphere to remove oxygen from the high oxidation state redox material, and thereby obtain a low oxidation state redox material and oxygen; and a hydrogen generation step of bringing water into contact with a low oxidation state redox material to oxidize the low oxidation state redox material and reduce the water, and thereby obtain a high oxidation state redox material and hydrogen. In the method for producing hydrogen of the present invention, the reduction step and the hydrogen generation step are performed switchingly in a same reaction vessel. Further, the apparatus for producing hydrogen of the present invention is used for performing the method for producing hydrogen of the present invention.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: February 10, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shinichi Takeshima
  • Patent number: 8954125
    Abstract: Low-loss superconducting devices and methods for fabricating low loss superconducting devices. For example, superconducting devices, such as superconducting resonator devices, are formed with a (200)-oriented texture titanium nitride (TiN) layer to provide high Q, low loss resonator structures particularly suitable for application to radio-frequency (RF) and/or microwave superconducting resonators, such as coplanar waveguide superconducting resonators. In one aspect, a method of forming a superconducting device includes forming a silicon nitride (SiN) seed layer on a substrate, and forming a (200)-oriented texture titanium nitride (TiN) layer on the SiN seed layer.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: February 10, 2015
    Assignees: International Business Machines Corporation, The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards
    Inventors: Antonio D. Corcoles Gonzalez, Jiansong Gao, Dustin A. Hite, George A. Keefe, David P. Pappas, Mary E. Rothwell, Matthias Steffen, Chang C. Tsuei, Michael R. Vissers, David S. Wisbey
  • Patent number: 8951936
    Abstract: Provided is a method of manufacturing a superconducting accelerator cavity in which a plurality of half cells having opening portions (equator portions and iris portions) at both ends thereof in an axial direction are placed one after another in the axial direction, contact portions where the corresponding opening portions come into contact with each other are joined by welding, and thus, a superconducting accelerator cavity is manufactured, the half cells to be joined are arranged so that the axial direction thereof extends in a vertical direction; and concave portions that are concave towards an outer side are also formed at inner circumferential surfaces located below the contact portions of the half cells positioned at a bottom; and the contact portions are joined from outside by penetration welding.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: February 10, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsuya Sennyu, Hiroshi Hara, Takehisa Okuda
  • Patent number: 8951495
    Abstract: The present invention relates to odor-inhibiting compositions comprising water-absorbing polymer particles and metal peroxides, and to the production thereof.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: February 10, 2015
    Assignee: BASF SE
    Inventors: Volker Braig, Thomas Daniel, Rupert Konradi, Herbert Platsch, Bettina Sobotka, Axel Jentzsch
  • Patent number: 8948831
    Abstract: A transmission system is provided with a superconductive cable having three phase conductors and a cryostat, surrounding the phase conductors, and encasing a hollow space, for conducting a cooling agent. For the three phase conductors, a common neutral conductor is provided, being made of electrically normally conducting material, carried out as insulating round conductor and placed outside the cryostat and next to it. The cryostat is made of a circumferentially enclosed, thermally insulated sheath.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: February 3, 2015
    Assignee: Nexans
    Inventors: Mark Stemmle, Frank Schmidt, Rainer Soika, Beate West
  • Patent number: 8946113
    Abstract: The present invention relates to an Fe-modified perovskite-type catalyst, a method for preparing same and a method for preparing a synthesis gas by a combined reforming reaction using same. More particularly, it relates to a catalyst for a combined natural gas/steam/carbon dioxide reforming reaction having a perovskite structure with La and Sr introduced at the A site and Ni and Fe introduced at the B site with specific molar ratios and a method for producing a synthesis gas for Fischer-Tropsch synthesis or methanol synthesis using the catalyst by the combined reforming reaction. The catalyst of the present invention exhibits higher carbon dioxide conversion rate, significantly reduced catalyst deactivation caused by carbon deposition and improved long-term catalyst stability and activity, as compared to the existing catalyst for reforming reaction prepared by the impregnation method.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: February 3, 2015
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Eun Hyeok Yang, Jin Hee Lee, Hyun Jin Kim, Byoung Sung Ahn, Sang Woo Kim, Jae Sun Jung
  • Patent number: 8945499
    Abstract: A process for producing ammonium nitrate is disclosed, which process comprises exposing a gaseous oxidiser feed composed at least substantially of ammonia, steam and an oxidising gas to conditions whereby the ammonia is oxidised to produce a reaction mixture including nitrogen monoxide and water vapour. The reaction mixture is cooled in a heat exchanger whereby the nitrogen monoxide is oxidised, the water vapour is condensed and the products of the nitrogen monoxide oxidation react with and are absorbed by the condensed water to form a nitric acid stream, with substantially all of the nitrogen monoxide in the reaction mixture being converted to nitric acid. The nitric acid stream is reacted with a stream of ammonia to form the ammonium nitrate.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: February 3, 2015
    Assignees: Orica International Pte Ltd, The University of Sydney
    Inventors: Anthony Matthew Johnston, Brian Scott Haynes, Gregory Lawrence Conroy