Patents Examined by Stephanie K. Mummert
  • Patent number: 11142758
    Abstract: Provided herein are methods for the collection and amplification of circulating nucleic acids from a non-celluar fraction of a biological sample. Circulating nucleic acids are extracted from the non-cellular fraction and are circularized to generate single-stranded nucleic acid circles, which are then subsequently amplified by rolling circular amplification using random primers to produce an amplified library. Devices for the collection of a non-cellular fraction from a biological sample are also provided. The device includes a filtration membrane and a dry solid matrix, which is in direct contact with the filtration membrane.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: October 12, 2021
    Assignee: Global Life Sciences Solutions Operations UK Ltd
    Inventors: Erik Leeming Kvam, John Richard Nelson, Gregory Andrew Grossmann, Ryan Charles Heller, Erin Jean Finehout, Christopher Michael Puleo, William Patrick Waters
  • Patent number: 11136631
    Abstract: The disclosure is directed to methods, kits, and compositions for amplifying and detecting a human immunodeficiency virus-1 (HIV-1) in a sample, which comprises a variety of combinations of forward oligonucleotide primers, reverse oligonucleotide primers, and oligonucleotide probes.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: October 5, 2021
    Assignee: ABBOTT MOLECULAR INC.
    Inventors: Jeffrey Wuitschick, Shihai Huang, Tomasz Krupinski, John Karavitis, John Salituro, Anna Sobol
  • Patent number: 11130988
    Abstract: According to one embodiment, a detection method is a method for detecting a plurality of target nucleic acids in a sample. The method includes (a) preparing a chain-elongation nucleic acid set group, a primer set, and a probe immobilized substrate, (b) obtaining the target nucleic acid and a long-chain nucleic acid group containing a first sub-chain-elongation nucleic acid and a second sub-chain-elongation nucleic acid, (c) obtaining an amplification product group by maintaining the long-chain nucleic acid group and the primer set under amplification conditions, (d) detecting presence/absence and/or an amount of hybridization, and (e) detecting the plurality of target nucleic acids.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: September 28, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Keiko Ito, Koji Hashimoto
  • Patent number: 11130997
    Abstract: The present invention provides methods for analyzing large nucleic acids including chromosomes and chromosomal fragments. In one aspect, the present invention provides a method of nucleic acid analysis comprising the steps of (a) obtaining a sample of nucleic acid comprising at least one chromosome or fragment greater than about 1 000 base pairs in length and containing a target region; (b) creating an emulsion in which each drop of the emulsion contains an average of between about 0-2, 0-1.75, 0-1.5, 0-1.0, 0-0.75, 0-0.5, or fewer chromosomes or fragments of step (a), (c) performing emulsion PCR, (d) quantifying the number of emulsion droplets containing amplified nucleic acid from the target region; (e) calculating the ratio of droplets containing amplified nucleic acid from the target region to total droplets; and (f) comparing the ratio of step (e) to a reference ratio representing a known genotype.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: September 28, 2021
    Assignee: Quest Diagnostics Investments Incorporated
    Inventor: Charles M. Strom
  • Patent number: 11123739
    Abstract: A thermal cycling method and associated device is described.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: September 21, 2021
    Assignee: CBF SYSTEMS INC.
    Inventors: Curtis Barry Figley, Darin Wayne Hunt
  • Patent number: 11118206
    Abstract: Disclosed herein are methods for multiple stage isothermal amplification of nucleic acid comprising a first substantially isothermal amplification reaction on the nucleic acid to generate a first amplification product and at least one substantially isothermal amplification reaction on the first amplification product to generate at least one second amplification product in an amount sufficient for recovery, testing, or characterization.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: September 14, 2021
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Haim H. Bau, Michael G. Mauk, Jinzhao Song, Changchun Liu
  • Patent number: 11118225
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: September 14, 2021
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11110461
    Abstract: The present disclosure provides fully integrated microfluidic systems to perform nucleic acid analysis. These processes include sample collection, nucleic acid extraction and purification, amplification, sequencing, and separation and detection. The present disclosure also provides optical detection systems and methods for separation and detection of biological molecules. In particular, the various aspects of the invention enable the simultaneous separation and detection of a plurality of biological molecules, typically fluorescent dye-labeled nucleic acids, within one or a plurality of microfluidic chambers or channels. The nucleic acids can be labeled with at least 6 dyes, each having a unique peak emission wavelength. The present systems and methods are particularly useful for DNA fragment sizing applications such as human identification by genetic fingerprinting and DNA sequencing applications such as clinical diagnostics.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: September 7, 2021
    Assignee: ANDE CORPORATION
    Inventors: Eugene Tan, Heung Chuan Lam, Valery Leonidovich Bogdanov, Gregory John Kellogg, John A. Wright, Ulrich Hans Thomann, Richard F. Selden
  • Patent number: 11111544
    Abstract: Disclosed herein is a system and method for increasing the fidelity of measured genetic data, for making allele calls, and for determining the state of aneuploidy, in one or a small set of cells, or from fragmentary DNA, where a limited quantity of genetic data is available. Poorly or incorrectly measured base pairs, missing alleles and missing regions are reconstructed using expected similarities between the target genome and the genome of genetically related individuals. In accordance with one embodiment, incomplete genetic data from an embryonic cell are reconstructed at a plurality of loci using the more complete genetic data from a larger sample of diploid cells from one or both parents, with or without haploid genetic data from one or both parents. In another embodiment, the chromosome copy number can be determined from the measured genetic data, with or without genetic information from one or both parents.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: September 7, 2021
    Assignee: Natera, Inc.
    Inventors: Matthew Rabinowitz, Milena Banjevic, Zachary Demko, David Johnson, Dusan Kijacic, Dimitri Petrov, Joshua Sweetkind-Singer, Jing Xu
  • Patent number: 11111488
    Abstract: The present invention refers to a method for isolating a fraction enriched of small RNA molecules from a fungal or plant sample.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: September 7, 2021
    Assignee: MIRNAGREEN S.R.L.
    Inventors: Roberto Viola, Alfredo Maglione
  • Patent number: 11111545
    Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: September 7, 2021
    Assignee: Natera, Inc.
    Inventors: Joshua Babiarz, Tudor Pompiliu Constantin, Lane A. Eubank, George Gemelos, Matthew Micah Hill, Huseyin Eser Kirkizlar, Matthew Rabinowitz, Onur Sakarya, Styrmir Sigurjonsson, Bernhard Zimmermann, Johan Baner, Allison Ryan, Milena Banjevic, Zachary Demko
  • Patent number: 11104966
    Abstract: A method for amplifying and detecting microorganisms, such as species of Listeria, is described. The method utilizes gene-matched enrichment media and PCR-based detection. The enrichment media is spent media produced using a modified microorganism containing a plurality of mutations in a selected gene such that the modified microorganism does not contain the PCR signature. Thus, PCR detects only the amplified microorganism of interest, not the modified microorganism. Exemplary methods and kits for amplification and detection of Listeria species are described.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: August 31, 2021
    Assignee: Battelle Memorial Institute
    Inventors: Richard M. Ozanich, Janine R. Hutchison, Kristin D. Victry, Becky M. Hess
  • Patent number: 11104938
    Abstract: Methods and compositions for detecting genetic instability using digital amplification assays. The methods may be performed in a set of isolated volumes and generally may involve competitive hybridization of a competitor and a probe/primer with a normal allele and one or more mutant alleles of a microsatellite locus. The competitor may be configured to compete similarly with, or to outcompete, the primer/probe for hybridization with the normal allele. The primer/probe may be configured to outcompete the competitor for hybridization with various mutant alleles of the locus that alter the length of the repetitive sequence by different amounts. Isolated volumes in which the primer/probe outcompetes the competitor may be enumerated, and represent one or more of the mutant alleles. The methods may enable diagnosing microsatellite instability and treating a subject based on the diagnosis.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: August 31, 2021
    Assignee: Bio-Rad Laboratories, Inc.
    Inventor: Dianna Maar
  • Patent number: 11098366
    Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: August 24, 2021
    Assignee: Natera, Inc.
    Inventors: Matthew Rabinowitz, Matthew Micah Hill, Bernhard Zimmermann, Johan Baner, George Gemelos, Milena Banjevic, Allison Ryan, Styrmir Sigurjonsson, Zachary Demko
  • Patent number: 11098380
    Abstract: The invention provides are agent and a method using this reagent for the detection of porcine adenovirus in a sample. The reagent comprises the following primer pair: the upstream primer: (5?-3?) ATCTTGAAATCACAATTCTTCTG (SEQ ID NO: 1); the downstream primer: (5?-3?) CAAGGAGCAGYTGGTGGAG (SEQ ID NO: 2), among the downstream primer Y can be T or C. This reagent and method are of strong specificity and high sensitivity, which can rapidly detect pig porcine adenovirus in samples.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: August 24, 2021
    Assignee: JIAXING ANYU BIOTECHNOLOGY CO., LTD.
    Inventors: Ping Chen, Na Li, Xintao Zhong, Tingting Zhang, Nan Li
  • Patent number: 11098365
    Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: August 24, 2021
    Assignee: Natera, Inc.
    Inventors: Joshua Babiarz, Tudor Pompiliu Constantin, Lane A. Eubank, George Gemelos, Matthew Micah Hill, Huseyin Eser Kirkizlar, Matthew Rabinowitz, Onur Sakarya, Styrmir Sigurjonsson, Bernhard Zimmermann
  • Patent number: 11091804
    Abstract: The invention provides methods for simultaneously amplifying multiple nucleic acid regions of interest in one reaction volume as well as methods for selecting a library of primers for use in such amplification methods. The invention also provides library of primers with desirable characteristics, such as minimal formation of amplified primer dimers or other non-target amplicons.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: August 17, 2021
    Assignee: Natera, Inc.
    Inventors: Bernhard Zimmermann, Matthew Hill, Philippe Lacroute, Michael Dodd, Alexander Wong
  • Patent number: 11091791
    Abstract: Provided herein are compositions, methods, and kits for enriching for one or more nucleic acid sequences of interest in a sample. The methods include providing a circular ligase, one or more 5? hook probes and/or one or more 3? hook probes and contacting the sample comprising the nucleic acids with the circular ligase and one or more 5? hook probes and/or one or more 3? hook probes under conditions to allow the hook probes to selectively bind to the one or more nucleic acid sequences of interest, and under conditions to form one or more hook products, each hook product comprising the hook probes and the one or more nucleic acid sequences of interest.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: August 17, 2021
    Assignee: MGI Tech Co., Ltd.
    Inventors: Yuan Jiang, Radoje Drmanac
  • Patent number: 11085090
    Abstract: A method for determining the presence or absence of a member of a group of bacterial organisms in a sample, wherein the method comprises determining whether a target region of the smpB gene is present in said sample is provided. Primers, probes and kits for use in these methods also form part of the invention, as does the use of an smpB gene target region to detect the presence or absence of a member of a group of bacterial organisms in a sample, in a range of clinical and non-clinical applications.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: August 10, 2021
    Assignee: National University of Ireland, Galway
    Inventors: Kate Mary Reddington, Nina Tuite, Elizabeth Minogue, Thomas Gerard Barry
  • Patent number: 11078507
    Abstract: The present invention pertains to an in vitro method in which the frequency of the targeted nucleotide sequence containing the DNA fragment of interest is increased stepwise, by several rounds of 1) dilution of a sample containing the DNA fragment of interest into several replicates (separation), 2) randomly amplifying DNA in the replicates (concentration), 3) detecting the DNA fragment of interest in at least one of the diluted and amplified replicates (selection) and repeating steps 1) through 3) until the DNA fragment of interest can be sequenced by standard sequencing techniques.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: August 3, 2021
    Assignee: Samplix ApS
    Inventors: Thomas Kvist, Marie Just Mikkelsen