Patents Examined by Steven Christopher
  • Patent number: 10037916
    Abstract: A method of forming a semiconductor structure includes providing a semiconductor substrate, forming at least one precursor semiconductor fin from the semiconductor substrate, etching through at least a portion of the at least one precursor semiconductor fin to form at least one patterned precursor semiconductor fin having a gap therein. The at least one patterned precursor semiconductor fin includes a first vertical surface and a second vertical surface with the gap therebetween. In addition, the method further includes forming a semiconductor material in the gap of the at least one patterned precursor semiconductor fin, in which the first vertical surface and the second vertical surface laterally surround the semiconductor material, and transforming the at least one patterned precursor semiconductor fin into at least one semiconductor fin including the semiconductor material therein.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: July 31, 2018
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Theodorus E. Standaert
  • Patent number: 10038302
    Abstract: A semiconductor device includes an n-type ohmic contact layer, cathode and anode electrodes, p-type and n-type modulation doped quantum well (QW) structures, and first and second ion implant regions. The anode electrode is formed on the first ion implant region that contacts the p-type modulation doped QW structure and the cathode electrode is formed by patterning the first and second ion implant regions and the n-type ohmic contact layer. The semiconductor device is configured to operate as at least one of a diode laser and a diode detector. As the diode laser, the semiconductor device emits photons. As the diode detector, the semiconductor device receives an input optical light and generates a photocurrent.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: July 31, 2018
    Assignees: THE UNIVERSITY OF CONNECTICUT, Opel Solar, Inc.
    Inventor: Geoff W. Taylor
  • Patent number: 10032668
    Abstract: Chamferless via structures and methods of manufacture are provided. The method includes: forming at least one self-aligned via within at least dielectric material; plugging the at least one self-aligned via with material; forming a protective sacrificial mask over the material which plugs the at least one self-aligned via, after a recessing process; forming at least one trench within the dielectric material, with the protective sacrificial mask protecting the material during the trench formation; removing the protective sacrificial mask and the material within the at least one self-aligned via to form a wiring via; and filling the wiring via and the at least one trench with conductive material.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: July 24, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Mark L. Lenhardt, Frank W. Mont, Brown C. Peethala, Shariq Siddiqui, Jessica P. Striss, Douglas M. Trickett
  • Patent number: 10026872
    Abstract: A solution for fabricating a device is described. The solution can include fabricating a heterostructure for the device, which includes at least one stress controlling layer. The stress controlling layer can include one or more attributes varies as a function of a lateral position based on a target variation of stresses in a semiconductor layer located directly under the stress controlling layer. Embodiments are further directed to a heterostructure including at least one stress controlling layer and a device including the heterostructure.
    Type: Grant
    Filed: June 5, 2016
    Date of Patent: July 17, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Alexander Dobrinsky
  • Patent number: 10026692
    Abstract: A semiconductor structure and a manufacturing method of the same are provided. The semiconductor structure includes a stack structure, an etching stop layer, and a conductive structure. The stack structure includes a plurality of conductive layers and a plurality of insulating layers stacked interlacedly. The etching stop layer is formed on a sidewall of the stack structure. An energy gap of the etching stop layer is larger than 6 eV. The conductive structure is electrically connected to at least one of the conductive layers.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: July 17, 2018
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventor: Shih-Hung Chen
  • Patent number: 10020205
    Abstract: A display apparatus includes a pixel having a first area emitting light and a second area transmitting light. A pixel circuit unit is in the first area and includes a thin film transistor. An inorganic insulation layer is in the second area. A first insulation layer covers the pixel circuit unit in the first area, and has an opening exposing the inorganic insulation layer in the second area. A first electrode is on the first insulation layer in the first area. The first electrode is electrically connected to the pixel circuit unit. A second insulation layer covers edges of the first electrode and is outside the opening formed in the first insulation layer. A second electrode is in the first area. An intermediate layer, including an emissive layer, is between the first electrode and the second electrode.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: July 10, 2018
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Chungi You, Gwanggeun Lee
  • Patent number: 10002945
    Abstract: A semiconductor device that includes at least one fin structure and a gate structure present on a channel portion of the fin structure. An epitaxial semiconductor material is present on at least one of a source region portion and a drain region portion on the fin structure. The epitaxial semiconductor material includes a first portion having a substantially conformal thickness on a lower portion of the fin structure sidewall and a second portion having a substantially diamond shape that is present on an upper surface of the source portion and drain portion of the fin structure. A spacer present on first portion of the epitaxial semiconductor material.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: June 19, 2018
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10002828
    Abstract: A magnetic polymer for use in microelectronic fabrication includes a polymer matrix and a plurality of ferromagnetic particles disposed in the polymer matrix. The magnetic polymer can be part of an insulation layer in an inductor formed in one or more backend wiring layers of an integrated device. The magnetic polymer can also be in the form of a magnetic epoxy layer for mounting contacts of the integrated device to a package substrate.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: June 19, 2018
    Assignee: Ferric, Inc.
    Inventors: Noah Sturcken, Ryan Davies
  • Patent number: 9997418
    Abstract: A method for fabricating a dual silicide device includes growing source and drain (S/D) regions for an N-type device, forming a protection layer over a gate structure and the S/D regions of the N-type device and growing S/D regions for a P-type device. A first dielectric layer is conformally deposited and portions removed to expose the S/D regions. Exposed S/D regions for the P-type device are silicided to form a liner. A second dielectric layer is conformally deposited. A dielectric fill is formed over the second dielectric layer. Contact holes are opened through the second dielectric layer to expose the liner for the P-type device and expose the protection layer for the N-type device. The S/D regions for the N-type device are exposed by opening the protection layer. Exposed S/D regions adjacent to the gate structure are silicided to form a liner for the N-type device. Contacts are formed.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: June 12, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Balasubramanian Pranatharthiharan, Ruilong Xie, Chun-Chen Yeh
  • Patent number: 9997605
    Abstract: The present invention discloses an LDMOS device, whose drift region is composed of a first drift region and a second drift region, the first drift region being composed of an ion implantation region formed in a selected region of the silicon substrate; the second drift region, composed of the doped polysilicon formed on the surface of the silicon substrate, is superimposed on the first drift region, with the drain region formed in the second drift region. With the second drift region of the present invention, the thickness of the entire drift region can be increased, and thus the parasitic resistance of the entire drift region can be reduced, the linear current of the device can be effectively increased, and the on-resistance of the device can be effectively reduced; the device of the present invention can also maintain a high breakdown voltage and lower process cost. The present invention further discloses a method for manufacturing the LDMOS device.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: June 12, 2018
    Assignee: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING CORPORATION
    Inventor: Wensheng Qian
  • Patent number: 9947827
    Abstract: A device emitting mid-infrared light that comprises a semiconductor substrate of GaSb or closely related material. The device can also comprise epitaxial heterostructures of InAs, GaAs, AISb, and related alloys forming light emitting structures cascaded by tunnel junctions. Further, the device can comprise light emission from the front, epitaxial side of the substrate.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: April 17, 2018
    Assignee: Terahertz Device Corporation
    Inventor: Mark S. Miller
  • Patent number: 9947761
    Abstract: A method for producing a semiconductor device includes an implantation step of performing proton implantation from a rear surface of a semiconductor substrate of a first conductivity type and a formation step of performing an annealing process for the semiconductor substrate in an annealing furnace to form a first semiconductor region of the first conductivity type which has a higher impurity concentration than the semiconductor substrate after the implantation step. In the formation step, the furnace is in a hydrogen atmosphere and the volume concentration of hydrogen is in the range of 6% to 30%. Therefore, it is possible to reduce crystal defects in the generation of donors by proton implantation. In addition, it is possible to improve the rate of change into a donor.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: April 17, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Yusuke Kobayashi, Takashi Yoshimura
  • Patent number: 9935283
    Abstract: Embodiments of the invention include a method for fabricating a semiconductor device and the resulting structure. A substrate is provided. A plurality of metal portions are formed on the substrate, wherein the plurality of metal portions are arranged such that areas of the substrate remain exposed. A thin film layer is deposited on the plurality of metal portions and the exposed areas of the substrate. A dielectric layer is deposited, wherein the dielectric layer is in contact with portions of the thin film layer on the plurality of metal portions, and wherein the dielectric layer is not in contact with portions of the thin film layer on the exposed areas of the substrate such that one or more enclosed spaces are present between the thin film layer on the exposed areas of the substrate and the dielectric layer.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: April 3, 2018
    Assignee: International Business Machines Corporation
    Inventors: Anthony J. Annunziata, Ching-Tzu Chen, Joel D. Chudow
  • Patent number: 9929159
    Abstract: At least one method, apparatus and system disclosed involves forming a finFET device having silicon and silicon germanium fins. The method includes: forming an n-doped and a p-doped region in a semiconductor wafer; forming a layer of silicon above both the those regions; removing a portion of the silicon layer above the p-doped region to create a first recess; forming a layer of silicon germanium in the first recess; etching away at least a portion of the silicon layer and the underlying p-doped region; etching away at least a portion of the silicon germanium layer and the underlying n-doped region; forming fins from the unetched silicon and silicon germanium layers; and forming a shallow trench isolation dielectric in the etched away portion of the silicon layer and the underlying p-doped region and in the etched away portion of the silicon germanium layer and the underlying n-doped region.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: March 27, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventor: David Paul Brunco
  • Patent number: 9929059
    Abstract: A method for fabricating a dual silicide device includes growing source and drain (S/D) regions for an N-type device, forming a protection layer over a gate structure and the S/D regions of the N-type device and growing S/D regions for a P-type device. A first dielectric layer is conformally deposited and portions removed to expose the S/D regions. Exposed S/D regions for the P-type device are silicided to form a liner. A second dielectric layer is conformally deposited. A dielectric fill is formed over the second dielectric layer. Contact holes are opened through the second dielectric layer to expose the liner for the P-type device and expose the protection layer for the N-type device. The S/D regions for the N-type device are exposed by opening the protection layer. Exposed S/D regions adjacent to the gate structure are silicided to form a liner for the N-type device. Contacts are formed.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: March 27, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Balasubramanian Pranatharthiharan, Ruilong Xie, Chun-Chen Yeh
  • Patent number: 9899400
    Abstract: A semiconductor device and a method of manufacturing a semiconductor device may be provided. The semiconductor device may include first channel layers arranged in a first direction. The semiconductor device may include second channel layers adjacent to the first channel layers in a second direction crossing the first direction and arranged in the first direction. The semiconductor device may include insulating layers stacked while surrounding side walls of the first and second channel layers. The semiconductor device may include conductive layers interposed between the insulating layers, and including first metal patterns extended in the first direction and second metal patterns extended in the first direction while surrounding the side walls of the first channel layers.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: February 20, 2018
    Assignee: SK hynix Inc.
    Inventor: Do Youn Kim
  • Patent number: 9875986
    Abstract: A fluxless bonding process is provided. An array of micro solder bumps of a first semiconductor structure is aligned to an array of bonding pads of a second semiconductor structure under an applied bonding force. An environment is provided to prevent oxides from forming on the solder bump structures and bonding pads during the bonding process. A scrubbing process is performed at a given scrubbing frequency and amplitude to scrub the micro solder bumps against the bonding pads in a direction perpendicular to the bonding. Heat is applied to at least the first semiconductor structure to melt and bond the micro solder bumps to the bonding pads. The first semiconductor structure is cooled down to solidify the molten solder. Coplanarity is maintained between the bonding surfaces of the semiconductor structures within a given tolerance during the scrubbing and cooling steps until solidification of the micro solder bumps.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: January 23, 2018
    Assignee: International Business Machines Corporation
    Inventors: Katsuyuki Sakuma, Thomas Weiss
  • Patent number: 9875927
    Abstract: A method for forming patterns for semiconductor device includes following steps. A substrate including a hard mask layer and a sacrificial layer is provided. A plurality of mandrel patterns are formed on the substrate. A spacer is respectively formed on sidewalls of the mandrel patterns. The mandrel patterns are removed to form a plurality of spacer patterns directly formed on the sacrificial layer. A plurality of first blocking layers are formed in the sacrificial layer after forming the spacer patterns. A plurality of second blocking layers exposing at least a portion of the sacrificial layer and at least a portion of the first blocking layers are formed on the substrate. The sacrificial layer and the hard mask layer are etched with the spacer patterns, the first blocking layers, and the second blocking layers serving as etching masks to form a patterned hard mask layer on the substrate.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: January 23, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Tzu-Hao Fu, Home-Been Cheng, Ci-Dong Chu, Tsung-Yin Hsieh
  • Patent number: 9847339
    Abstract: Various embodiments provide a self-merged profile (SMP) method for fabricating a semiconductor device and a device fabricated using an SMP method. In an example embodiment, a semiconductor device is provided. The example semiconductor device comprises (a) a plurality of conductive lines; (b) a plurality of conductive pads; (c) a plurality of dummy tails; and (d) a plurality of closed loops. Each of the plurality of conductive pads is associated with one of the plurality of conductive lines, one of the plurality of dummy tails, and one of the plurality of closed loops. In example embodiments, the plurality of dummy tails and the plurality of closed loops are formed as residuals of the process used to create the plurality of conductive lines and the plurality of conductive pads.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: December 19, 2017
    Assignee: Macronix International Co., Ltd.
    Inventors: Yu-Min Hung, Chien-Ying Lee, Tzung-Ting Han
  • Patent number: 9845533
    Abstract: Embodiments of improved substrate carriers are provided herein. In some embodiments, a substrate carrier, includes: a multi-layered disk having upper and lower layers formed of a continuous material and an electrostatic electrode structure disposed therebetween, wherein the multi-layered disk is dimensioned and arranged so as to have a nominal dimension which exceeds a nominal dimension of a standard substrate size used in the manufacture of light emitting diode devices, and wherein the multi-layered disk is formed symmetrically about a central axis and defines a substantially planar upper surface.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: December 19, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sriskantharajah Thirunavukarasu, Karthik Elumalai, Jen Sern Lew, Mingwei Zhu