Patents Examined by Steven W. Bailey
  • Patent number: 11959128
    Abstract: The present invention relates to the field of noninvasive prenatal gene testing by high-through sequencing technologies. Particularly, the present application relates to a method for determining the content of cell-free fetal DNA in maternal peripheral blood.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: April 16, 2024
    Assignee: BERRY GENOMICS CO., LTD.
    Inventors: Xiaojie Zhang, Tao Cheng, Xiangbin Chen, Jianguang Zhang
  • Patent number: 11935625
    Abstract: A computer-implemented method for processing and/or analyzing nucleic acid sequencing data comprises receiving a first data input and a second data input. The first data input comprises untargeted sequencing data generated from a first nucleic acid sample obtained from a subject. The second data input comprises target-specific sequencing data generated from a second nucleic acid sample obtained from the subject. Next, with the aid of a computer processor, the first data input and the second data input are combined to produce a combined data set. Next, an output derived from the combined data set is generated. The output is indicative of the presence or absence of one or more polymorphisms of the first nucleic acid sample and/or the second nucleic acid sample.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: March 19, 2024
    Assignee: PERSONALIS, INC.
    Inventors: Jason Harris, Mark R. Pratt, John West, Richard Chen, Ming Li
  • Patent number: 11929145
    Abstract: Technology provided herein relates in part to methods, processes, machines and apparatuses for non-invasive assessment of genetic alterations. In particular, a method is provided for that includes obtaining a set of sequence reads. The sequence reads each include a single molecule barcode (SMB) sequence that is a non-random oligonucleotide sequence. The method further includes assigning the sequence reads to read groups according to a read group signature. The read group signature comprises an SMB sequence and a start and end position of a nucleic acid fragment from the circulating cell free sample nucleic acid. The sequence reads comprising start and end positions and an SMB sequence similar to the read group signature are assigned to a read group. The method further includes generating a consensus for each read group, and determining the presence or absence of a genetic alteration based on the consensus for each read group.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: March 12, 2024
    Assignee: SEQUENOM, INC
    Inventors: Mostafa Azab, Michael Sykes, Youting Sun, Amin Mazloom, Taylor Jensen, Mathias Ehrich, Christopher Ellison
  • Patent number: 11928614
    Abstract: Methods, systems and compositions that allow for treating a patient according to a patient customized therapeutic regimen are provided. Embodiments of the invention include obtaining dosage administration information from a patient and using the same to tailor a therapeutic regimen for the patient. Embodiments of the invention further include preparing and forwarding to the patient physical pharmaceutical dosages based on the customized therapeutic regimen.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: March 12, 2024
    Assignee: OTSUKA PHARMACEUTICAL CO., LTD.
    Inventors: Mark J. Zdeblick, Andrew Thompson, George M. Savage
  • Patent number: 11923046
    Abstract: Disclosed herein are methods, systems, and apparatus for detecting microamplifications or microdeletions in the genome of a fetus. In some embodiments, the method comprises receiving sequence tags for each of a plurality of DNA fragments in a biological sample; determining genomic positions for the sequence tags; determining whether the density of DNA in each of a plurality of genomic regions is aberrantly high or low; identifying as a microamplification a set of consecutive genomic regions having aberrantly high density; and identifying as a microdeletion a set of consecutive genomic regions having aberrantly low density. The biological sample may be a blood sample obtained noninvasively from a female subject pregnant with the fetus.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: March 5, 2024
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk Ming Dennis Lo, Kwan Chee Chan, Peiyong Jiang, Cheuk Yin Jandy Yu, Rossa Wai Kwun Chiu
  • Patent number: 11892945
    Abstract: A method for storage of an item of information (210) is disclosed. The method comprises encoding bytes (720) in the item of information (210), and representing using a schema the encoded bytes by a DNA nucleotide to produce a DNA sequence (230). The DNA sequence (230) is broken into a plurality of overlapping DNA segments (240) and indexing information (250) added to the plurality of DNA segments. Finally, the plurality of DNA segments (240) is synthesized (790) and stored (795).
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: February 6, 2024
    Assignee: EUROPEAN MOLECULAR BIOLOGY LABORATORY
    Inventors: Nick Goldman, John Birney
  • Patent number: 11833164
    Abstract: Provided are methods of treating a patient diagnosed with Fabry disease and methods of enhancing ?-galactosidase A in a patient diagnosed with or suspected of having Fabry disease. Certain methods comprise administering to a patient a therapeutically effective dose of a pharmacological chaperone for ?-galactosidase A, wherein the patient has a mutation in the nucleic acid sequence encoding ?-galactosidase A. Also described are uses of pharmacological chaperones for the treatment of Fabry disease and compositions for use in the treatment of Fabry disease.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: December 5, 2023
    Assignee: Amicus Therapeutics, Inc.
    Inventors: Elfrida Benjamin, Xiaoyang Wu
  • Patent number: 11837325
    Abstract: Provided is a method for identifying balanced translocation breakpoints and a carrying state for balanced translocations in embryos, comprising the following steps: amplifying and sequencing a sample; comparing the sequence which is obtained by means of sequencing with a reference genome and analyzing copy numbers; accurately determining the position of a translocation breakpoint; detecting single nucleotide polymorphisms (SNPs) around the breakpoint and genotyping the SNPs; analyzing an embryonic haplotype, and comprehensively determining a normal chromosome and a translocation chromosome haplotype; determining the embryonic carrying state and, according to the haplotype, selecting an embryo which does not carry a balanced translocation.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: December 5, 2023
    Assignee: YIKON GENOMICS (SHANGHAI) CO., LTD
    Inventors: Shiping Bo, Zhen Zhang, Jun Ren, Yumei Gao, Sijia Lu
  • Patent number: 11783914
    Abstract: Embodiments of a system and method for characterizing a panel of conditions associated with a set of taxa related to microorganisms can include a taxonomic database including reference microbiome features for the set of taxa associated with the panel of conditions; a handling operable to collect a container including biological material from a user, the handling system comprising a sequencer system operable to determine a microorganism sequence dataset; and a panel characterization system operable to: determine user microbiome features for the set of taxa for the user based on the microorganism sequence dataset, generate a comparison between the user microbiome features and the reference microbiome features, and determine a panel characterization for the panel of conditions for the user based on the comparison; and a treatment system operable to promote a therapy for a condition of the panel of conditions based on the panel characterization.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: October 10, 2023
    Assignee: PSOMAGEN, INC.
    Inventors: Zachary Apte, Jessica Richman, Daniel Almonacid, Laurens Kraal, Francisco Ossandon, Juan Pablo Cardenas, Elisabeth Bik, Audrey Goddard
  • Patent number: 11655500
    Abstract: A method for sequencing a nucleic acid template includes: (a) performing a first sequencing process including flowing nucleotides and/or reagents to the nucleic acid template according to a first predetermined ordering of nucleotides and/or reagents to obtain a first sequencing result; (b) after the first sequencing process, performing a second sequencing process including flowing nucleotides and/or reagents to the nucleic acid template according to a second predetermined ordering of nucleotides and/or reagents to obtain a second sequencing result, the second predetermined ordering of nucleotides and/or reagents being different from the first predetermined ordering of nucleotides and/or reagents and at least one of the first and second predetermined orderings of nucleotides and/or reagents being designed for repeat sequencing; and (c) determining a sequence of bases corresponding to at least a portion of the nucleic acid template using both the first sequencing result and the second sequencing result.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: May 23, 2023
    Assignee: Life Technologies Corporation
    Inventors: Earl Hubbell, Christian Koller, Nils Homer