Patents Examined by Suba Ganesan
  • Patent number: 11957575
    Abstract: Stented prosthetic heart valves including a stent frame having a plurality of stent frame support structures collectively defining an interior surface, an exterior surface and a plurality of cells. The stented prosthetic heart valve further including a valve structure including valve leaflets disposed within and secured to the stent frame and defining a margin of attachment. The stented prosthetic heart valve including one or both of an outer paravalvular leakage prevention wrap and an inner skirt for supporting the valve leaflets. In various embodiments, the outer wrap is positioned entirely on one side of the margin of attachment. In embodiments including an inner skirt, the outer wrap and the inner skirt are on opposite sides of the margin of attachment such that the inner skirt and the outer wrap do not overlap. In other embodiments, the outer wrap includes a plurality of zones having varying thickness.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: April 16, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Elliot Howard, Amy Hallak, Ana Menk, Matthew Weston, Joel Racchini
  • Patent number: 11957564
    Abstract: An implantable graft may include a main section having walls formed with a woven fabric, the main section having a main lumen extending therethrough. The implantable graft may also include a bifurcated section having walls formed with the woven fabric, where the bifurcated section extends from main section, where the bifurcated section includes a first branch and a second branch, and where the first branch and the second branch each include a branch lumen in fluid communication with the main lumen. At least one branch of the bifurcated section may include a branch taper formed by a seam connecting a first woven layer and a second woven layer. A seam extension may extend outwardly along the seam of the branch taper, the seam extension being a single-layer woven structure.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: April 16, 2024
    Assignee: Cook Medical Technologies LLC
    Inventor: Ruwan Sumanasinghe
  • Patent number: 11957560
    Abstract: An assembly includes a medical device having a stent and a prosthetic valve connected to the stent. The prosthetic valve includes valve leaflets. The assembly further includes a buffer piece having a leaflet cover and a removable attaching structure. The leaflet cover protects the valve leaflets and the removable attaching structure removably attaches the buffer piece to the medical device. The buffer piece prevents contact, imprinting, abrasion, and/or damage to the valve leaflets.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: April 16, 2024
    Assignee: Medtronic Vacular, Inc.
    Inventors: Thuy Linh Dinh, Alkindi Kibria, Victoria Ung, Veronica Woen, Priyanka Ganesh, Kshitija Garde
  • Patent number: 11951006
    Abstract: A prosthetic heart valve has a plurality of valve leaflets that control directional flow of blood through a heart and a stent structure having a plurality of commissure posts supporting the valve leaflets. The stent structure has a covering over the plurality of commissure posts and has a sewing ring at an inflow end of the stent structure. Each of the plurality of commissure posts has a tip and a suture loop is attached to the covering at a location adjacent to or on the tip of the commissure post. Each suture loop provides a passage for a suture to pass through between the covering and the suture loop.
    Type: Grant
    Filed: January 4, 2023
    Date of Patent: April 9, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Da-Yu Chang, Amy E. Munnelly, Van Huynh, Avina Gupta, Brian S. Conklin, Sooji Van Echten, Kurt Kelly Reed, Amanda Grace Sall
  • Patent number: 11946028
    Abstract: The presently disclosed subject matter provides a biomimetic organ model, and methods of its production and use. In one exemplary embodiment, the biomimetic organ model can be a multi-layer model including a at least two microchannels and at least one chamber slab with at least one membrane coated with cells disposed between at least one microchannel and the at least one chamber slab. In another exemplary embodiment, the biomimetic organ disease model can be a five-layer model including a first and second microchannel with a membrane-gel layer-membrane coated or encompassing cells disposed between the microchannels. In certain embodiments, at least one device can be coupled to the biomimetic organ model that delivers an agent to at least one microchannel.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: April 2, 2024
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Dongeun Huh, Mark Mondrinos
  • Patent number: 11944540
    Abstract: Described herein are devices and methods for mitral valve repair. The devices and methods implant a plurality of distal anchors at an annulus of the mitral valve (e.g., the posterior annulus) and tension artificial chordae to pull the portion of the annulus toward an opposite edge and inward into the ventricle. This can effectively reduce the size of the orifice and increase coaptation. The delivery devices can be configured to be actuated to form a distal anchor made of a pre-formed knot. The delivery devices deliver the pre-formed knot in an elongate configuration. Actuation of the delivery device causes the pre-formed knot to transition from the elongate configuration to the deployed configuration by approximating opposite ends of a suture coupled to a coiled configuration to form one or more loops. After formation of the knot, the delivery device can be withdrawn.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: April 2, 2024
    Assignees: University of Maryland, Baltimore, Harpoon Medical, Inc.
    Inventors: Michael Nicholas D'ambra, Felino V. Cortez, Jr., James S. Gammie, Peter Wilson, Stephen Epstein, Stephen Cournane, Julie Marie Etheridge, Peter Boyd
  • Patent number: 11931255
    Abstract: A prosthetic aortic valve is provided including a frame including interconnected stent struts arranged so as to define interconnected stent cells. Upstream ones of the stent cells are located in an upstream half of the frame and define respective upstream peaks. An electrode is disposed at or near an upstream peak of one of the upstream stent cells. First and Second upstream stent struts of the one of the upstream stent cells are joined at the upstream peak. Coupling material is shaped so as to define a first strip that is mechanically coupled to the first upstream stent strut, a second strip that is mechanically coupled to the second upstream stent strut, and a junction, which couples together the first and the second strips, such that the first and the second strips together couple the electrode to the frame at or near the upstream peak. Other embodiments are also described.
    Type: Grant
    Filed: August 18, 2023
    Date of Patent: March 19, 2024
    Assignee: E-VALVE SYSTEMS LTD.
    Inventors: Yossi Gross, Navot Rabban, Meni Iamberger, Aharon Daffan
  • Patent number: 11931254
    Abstract: A low-profile prosthetic valve for treating a native valve includes a radially expandable frame having an expanded configuration and a collapsed configuration. The atrial end of the prosthetic valve forms a flared shape that engages an atrial surface of the native valve. The flare shape flares downward toward a ventricle of the native valve when initially expanded followed by inversion of the flared shape to form a tapered shape tapering toward the ventricle and flaring toward the atrium of the native valve when fully expanded. The prosthetic valve also has a plurality of prosthetic valve leaflets that open and close to control fluid flow through the prosthetic valve.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: March 19, 2024
    Assignee: Neovasc Tiara Inc.
    Inventors: Eric Soun-Sang Fung, Karen Tsoek-Ji Wong, Ephraim Ben-Abraham
  • Patent number: 11925550
    Abstract: An implantable prosthetic valve that is radially collapsible to a collapsed configuration and radially expandable to an expanded configuration includes an annular frame including a plurality of angled strut members, a plurality of leaflets disposed within the frame and secured to the frame, and a skirt member secured to the frame. The skirt member is disposed about an edge portion of a leaflet of the plurality of leaflets, and the skirt member includes a plurality of extension portions wrapped around at least one strut member. A cord member is threaded through at least a portion of the plurality of extension portions in a direction along an axis of the at least one strut member to secure the skirt member to the at least one strut member.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: March 12, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Tomer Saar, Michael Bukin, Elena Sherman, Alexander Barash, Yana Mayatskaya
  • Patent number: 11925552
    Abstract: A stent device with skirt folds and a processing method thereof, a skirt folding method, and a heart valve. The stent device comprises a stent (1, 105) and a flexible skirt (2, 107), the skirt (2, 107) having an expanded state, in which the skirt is axially extended and surrounds the stent (1, 105) before release thereof, and a folded state, in which the skirt is driven by the deformation caused when the stent (1, 105) is released, collapses and folds axially along the released stent (1, 105) so as to form an annular peripheral leakage-blocking portion. The peripheral leakage prevention technology enables an interventional stent to fit to the inner wall of a vessel more snugly, such that the stent does not easily move and is more stable, thereby being suitable for more people, reducing additional risks of surgery and preventing complications such as peripheral leakage and thrombus.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: March 12, 2024
    Assignee: VENUS MEDTECH (HANGZHOU), INC.
    Inventors: Dajun Kuang, Jesse Jun Qi, Min Frank Zeng, Jincheng Yu, Lo Pham, Lai Nguyen
  • Patent number: 11925549
    Abstract: A valve for endovascular heart valve repair that provides improved sealing of the valve against the native wall. The valve assembly has a sealing region at a distal end of the valve. The sealing region having a delivery position and a sealing position, wherein in the delivery position, the sealing region has a first length, and in the sealing position, the sealing region has a second length less than the first length and a thickness in the sealing position is greater in the sealing position than in the delivery position.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: March 12, 2024
    Assignee: Anteris Technologies Corporation
    Inventors: Andrew Reed, Dave Mathieu, William Morris Leonard Neethling
  • Patent number: 11918454
    Abstract: Devices and methods for fixating a graft tendon in a bone tunnel for a ligament reconstruction or repair procedure are provided. In general, the described implantable tissue fixation device includes first and second elongate, substantially rigid support members that are discrete elements separated from each other, and at least one flexible member connecting the rigid support members. The tissue fixation device can have changeable dimensions such that it has at least one dimension that is smaller in a delivery configuration than in a deployed configuration. In both delivery and deployed configurations, the first and second rigid support members are positioned in a non-intersecting orientation with respect to one another. A graft retention loop coupled to the tissue fixation device has the graft tendon coupled thereto and extending into the bone tunnel so as affix the graft into the bone.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: March 5, 2024
    Assignee: Medos International Sarl
    Inventor: David B. Spenciner
  • Patent number: 11911269
    Abstract: A prosthesis can include a collapsible, reexpandable frame comprising first, second, and third sets of struts that define first and second rows of expandable cells. In some embodiments, the struts of the first, second, and third set of struts can be tapered. In some embodiments, the frame can include an intermediate section and an inflow section that is proximal to the intermediate section. The inflow section can include a concave saddle portion that is adjacent the intermediate section, and an outwardly flared portion.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: February 27, 2024
    Assignee: MEDTRONIC CV LUXEMBOURG S.A.R.L.
    Inventors: Padraig Savage, Joseph Callol, Alaena DeStefano, Joshua Dwork, Devin Gosal, Karan Punga, Finn Rinne, Billy Tam
  • Patent number: 11903827
    Abstract: This document provides devices and methods for the treatment of heart conditions. For example, this document provides prosthetic heart valves and transcatheter heart valve replacement methods. The prosthetic heart valves can be configured into a low-profile configuration for containment within a small diameter delivery sheath. The prosthetic heart valves include can include a valve member attached to a stent frame. In some embodiments, the valve member is a molded biomaterial with a novel shape and resulting performance characteristics. Localized protective covering members can be attached to the stent frame to prevent the valve member from contacting the stent frame as the valve member cycles between its open and closed configurations.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: February 20, 2024
    Assignee: Anteris Technologies Corporation
    Inventors: Jason Quill, William Leon Neethling, Christopher B. Brodeur, Ramji Iyer, Kaitlyn Roth
  • Patent number: 11903859
    Abstract: Systems, devices, and methods are provided for the delivery of an implant into the prostatic urethra. Embodiments of delivery systems can include a delivery device for insertion into the patient and a proximal control device for use in controlling release of the implant from the delivery device.
    Type: Grant
    Filed: July 28, 2023
    Date of Patent: February 20, 2024
    Assignee: Zenflow, Inc.
    Inventors: Marcel Song Sicotte, Austin Michael Bly, Ben Collett-Nye, Shreya Mehta
  • Patent number: 11903833
    Abstract: A conical shaped venous valve structure formed from collagenous mammalian tissue.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: February 20, 2024
    Assignee: Cormatrix Cardiovascular, Inc.
    Inventor: Robert G Matheny
  • Patent number: 11903826
    Abstract: Various features and associated advantages are described for diametrically adjustable support structures, adjustable valve structures, removable/replaceable valve structures, and associated systems and methods. Although some examples are directed toward prosthetic valve that is a conduit having a valve structure, or a “valved conduit” (e.g., used to replace a pulmonary valve and a portion of the corresponding pulmonary artery or an aortic valve and the aortic root), and other examples are directed toward prosthetic valves implanted native valve orifices (e.g., to replace an aortic or mitral valve), the features and advantages of the structures associated with those examples are interchangeable regardless of a particular application for which the examples are described.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: February 20, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Kyle W. Colavito, Dustin V. Dienno, Paul D. Goodman, Brandon C. Hedberg, Brandon A. Lurie, Devin M. Nelson
  • Patent number: 11904156
    Abstract: A system for generating a blood circulation in at least part of an organ of a vertebrate, including a first artificial cavity and a second artificial cavity. The cavities each include a flexible membrane capable of beating under the action of a gas. Each of the membranes separate in a sealed manner a blood circulation chamber and a chamber containing the gas. The system also includes: a first low pressure gas buffer reservoir; a second high-pressure gas buffer reservoir; a gas distribution; and a pneumatic pump.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: February 20, 2024
    Assignee: PROCOPE MEDICALS
    Inventors: Saïd Chabane, Samuel Plumejault
  • Patent number: 11896483
    Abstract: A cardiac valve delivery system includes a lead configured to be inserted through a venous system to a heart, the lead having a distal end with a myocardial attachment apparatus, and a transcatheter prosthesis element configured to be delivered along the lead. The transcatheter prosthesis is configured with an anchoring element located on the outside rim of the prosthesis, configured to fix the transcatheter prosthesis in place along the lead. The prosthesis is also movable along the lead and steerable towards the appropriate angulation with the lead.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: February 13, 2024
    Inventor: Maurice Enriquez-Sarano
  • Patent number: 11896474
    Abstract: An example medical device for treating a body lumen is disclosed. The medical device includes an expandable scaffold including first and second regions, each of the first and second regions include a plurality of interstices located therein. The medical device also includes a covering spanning each of the plurality of interstices of the first region. The second region is free of the covering. A biodegradable gripping material is disposed on an outer surface of the covering. Further, the expandable scaffold is configured to shift from a collapsed state to an expanded state and the second region is configured to contact an inner surface of the body lumen in the expanded state. Additionally, the gripping material is designed to initially prevent migration of the expandable scaffold upon implantation in the body lumen until the second region is secured to the inner surface of the body lumen.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: February 13, 2024
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Martin Hynes, Martyn G. Folan, David R. Wulfman, Thomas M. Keating, Matthew Montague, Damien V. Nolan