Patents Examined by Sujoy Kundu
  • Patent number: 9766053
    Abstract: A system and method for determining a change in a thickness and temperature of a surface of a material are disclosed herein. The system and the method are usable in a thermal protection system of a space vehicle, such as an aeroshell of a space vehicle. The system and method may incorporate micro electric sensors arranged in a ladder network and capacitor strip sensors. Corrosion or ablation causes a change in an electrical property of the sensors. An amount of or rate of the corrosion or the ablation and a temperature of the material is determined based on the change of the electrical property of the sensors.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: September 19, 2017
    Assignee: The United States of America as Represented by the Administrator of NASA
    Inventor: Robert Okojie
  • Patent number: 9749716
    Abstract: Sensors within sensor node networks may communicate bio-event or other types of measurement results/decisions between each other using signal transmission variations. Each sensor node within a network and between networks may transmit and receive signals. A sensor node may scale a signal transmission power in a manner that is proportional to a confidence level of a decision or measurement about an event being detected. Each sensor node will receive transmissions from neighboring nodes, and can refine an estimate about an occurrence of the event at its location based on received signal strengths, for example.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: August 29, 2017
    Assignee: INDIAN INSTITUTE OF SCIENCE (IISC)
    Inventor: Neelesh B. Mehta
  • Patent number: 9746527
    Abstract: There is provided an apparatus for battery life estimation comprising an energy harvester; an energy storage apparatus, connected to the energy harvester, the energy storage apparatus representative of a unit of measure; a battery for receiving energy from the storage apparatus; and a processor for monitoring the energy provided by the storage apparatus, monitoring energy provided to the battery by other charging apparatus and monitoring the energy being delivered by the battery; wherein the processor calculates the remaining life of the battery based on the number of energy storage apparatus units that are provided to and delivered from the battery.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: August 29, 2017
    Assignee: BlackBerry Limited
    Inventors: Lyall Kenneth Winger, David Gerard Rich, Rene Pierre Marchand
  • Patent number: 9724165
    Abstract: The invention relates to a surgical system and, more particularly, to a surgical system and method for verifying calibration of a surgical device. The surgical system or method can be configured to perform the steps of: identifying an interface on an anatomy of a patient, determining a position of a checkpoint of the interface in a coordinate frame of reference, contacting the interface with a portion of a surgical tool of the surgical device, determining a position of the portion of the surgical tool in the coordinate frame of reference, and determining whether the position of the portion of the surgical tool has an expected correspondence to the position of the checkpoint. The interface may comprise a painted portion of a bone of the patient, a divot made in the bone, or a mechanical interface that includes a portion configured to be affixed to the bone and an interface portion that is configured to be contacted by the portion of the surgical tool.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: August 8, 2017
    Assignee: MAKO Surgical Corp.
    Inventors: Louis Arata, Sherif Aly, Robert Van Vorhis, Sandi Glauser, Timothy Blackwell, Rony Abovitz, Maurice R. Ferre
  • Patent number: 9727435
    Abstract: A method for automatically scaling estimates of digital power consumed by a portion of an integrated circuit (IC) device by the operating frequency of the portion of the IC are described herein. The method may include obtaining an energy value which may correspond to an amount of energy used by the portion of the IC. A cumulative energy value may be generated by repeatedly, at a frequency proportional to the operating frequency of the portion of the IC, obtaining energy values and adding each obtained energy value to a sum of energy values for the portion of the IC. The cumulative energy value may be sampled at a time sample interval to generate an estimate of the portion of the IC's digital power consumption that is automatically scaled with the operating frequency of the portion of the IC.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: August 8, 2017
    Assignee: ADVANCED MICRO DEVICES, INC.
    Inventors: Samuel D. Naffziger, Suresh B. Periyacheri
  • Patent number: 9719829
    Abstract: This invention is to improve procedures of maintenance of a fluid measurement system having a fluid measurement device and a control device. The fluid measurement system has a fluid measurement device and a control device to control the fluid measurement device, and the fluid measurement device comprises a fluid sensor and a related data store part configured to store fluid calculation related data for calculation of one or more fluid parameters with measurement data obtained by the fluid sensor, and the control device obtains the fluid calculation related data from the related data store part and calculates the one or more fluid parameters with the measurement data of the fluid sensor and the fluid calculation related data.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: August 1, 2017
    Assignee: HORIBA STEC, Co., Ltd.
    Inventors: Kazuhiro Matsuura, Hiroshi Takakura, Yukimasa Furukawa, Tadahiro Yasuda
  • Patent number: 9719771
    Abstract: A rotation angle sensor for detecting an absolute rotation angle upon single or multiple revolutions includes a magnetic field sensor and an encoder arrangement. The magnetic field sensor detects at least two orthogonal magnetic field variables. The encoder arrangement is rotatable depending on the absolute rotation angle relative to the magnetic field sensor, such that the magnetic field detected by the magnetic field sensor is dependent on a relative angular position of the encoder arrangement with respect to the magnetic field sensor. The encoder arrangement is furthermore displaceable relative to the magnetic field sensor. The relative angular position and the relative translational position of the encoder arrangement with respect to the magnetic field sensor is determined from the at least two orthogonal magnetic field variables. The absolute rotation angle is determined by means of the relative angular position and the relative translational position.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: August 1, 2017
    Assignee: Infineon Technologies AG
    Inventor: Udo Ausserlechner
  • Patent number: 9689662
    Abstract: A scale has marks whose pitch interval changes along a measurement direction in a manner that can be approximated to a quadratic or higher-order polynomial. A comparing unit calculates a difference between first relative position information and second relative position information per unit displacement in a position where a first displacement detecting unit is arranged. Then, an absolute position computing unit computes an absolute position in the measurement direction with respect to the scale based on absolute position information and the relative position information of at least one of the first relative position information and the second relative position information, and outputs the absolute position.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: June 27, 2017
    Assignee: DMG MORI SEIKI CO., LTD.
    Inventor: Hideaki Tamiya
  • Patent number: 9671485
    Abstract: A high resolution data acquisition (DAQ) system is initially calibrated with a reference source having a resolution higher than the DAQ system. Measurements over the operating range of the DAQ system are taken, and characteristic calibration coefficients are determined from the measurements. Software corrections based upon the calibration coefficients are made to DAQ system measurements. A digital to analog converter (DAC) on-board the DAQ system having a lower resolution than the DAQ system is calibrated by generating a look-up table of input digital codewords and output electrical signals measured by the calibrated DAQ system. This look-up table is used to field calibrate the DAQ system using only the DAC, rather than the high resolution reference source.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: June 6, 2017
    Assignee: Fluke Corporation
    Inventors: V. s. s Kumar Vennelakanti, Ramesh Babu Srinivasa
  • Patent number: 9672187
    Abstract: A non-destructive testing system includes directing guided wave energy to regions of interest in waveguides. Knowing the propagation paths taken by guided wave energy in complex waveguides can be used to intentionally insonify regions of interest. Additionally, knowledge of the propagation direction and location of an energy mode in a waveguide allows the calculation of the path previously taken by the energy mode. This information can be used for signal processing of guided wave inspection systems. The test system can have various sensor configurations including: a single transducer configured to direct or receive guided wave energy along a particular direction, a one-dimensional array or a two dimensional array of transducers. The transducers can operate independently to provide mutual phasing and amplitude adjusting to steer guided wave energy in a waveguide or determine the directionality of guided wave energy received by the sensors.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 6, 2017
    Assignees: ELECTRIC POWER RESEARCH INSTITUTE, The Penn State Research Foundation
    Inventors: Luke Breon, Michael J Quarry, Joseph L. Rose, Ehsan Khajeh
  • Patent number: 9619433
    Abstract: A normal-line detection method for finding the normal vector of a measurement surface of a measurement target by means of at least one distance detector and calculating the normal vector from the measurement results thus obtained is provided. The normal vector of the measurement surface is found by calculating the exterior product of a first vector which connects a first measurement point and a second measurement point and a second vector which connects a third measurement point and a fourth measurement point and is shifted in parallel such that an end thereof is set at any one of the first measurement point and the second measurement point.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 11, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yoshihito Fujita, Mikio Nakamura, Hirofumi Ienaga
  • Patent number: 9605710
    Abstract: A method for early detection of developing damage in a bearing caused by flow of a bearing current includes evaluating a long-term measurement of a measured variable representative of a bearing current amplitude of a bearing current during a bearing operation, representing—based on the evaluation—measurement results in form of a histogram which displays a number of bearing currents per time interval in each interval of the bearing current amplitude, and evaluating the histogram representation of the measurement results through pattern comparison. A device for carrying out the method is also disclosed.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: March 28, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Jörg Hassel, Carsten Probol, Hans Tischmacher
  • Patent number: 9599531
    Abstract: Technical solutions are described for determining topological connectivity between stations of a fluid-delivery pipeline network. An example method includes receiving temporal sensor measurements of the fluid-delivery pipeline network, that include a series of sensor measurements from each respective station of the fluid-delivery pipeline network. The method also includes generating a causality graph of the fluid-delivery pipeline network based on the temporal sensor measurements, where the causality graph includes a set of nodes and a set of links, where the nodes are representative of the stations, and a pair of nodes is connected by a link in response to the pair of stations being temporally dependent. The method also includes determining a topological network of the stations based on the causality graph, where the topological network identifies one or more destination stations for a supply station in the fluid-delivery pipeline network.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: March 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Harsh Chaudhary, Younghun Kim, Tarun Kumar, Abhishek Raman, Rui Zhang
  • Patent number: 9599647
    Abstract: The purpose of the present invention is to provide a processing apparatus, which operates using a power supply that asynchronously supplies and stops supplying power, and a processing method. A processing apparatus (10) of the present invention is provided with: a power supply monitoring unit (20), which monitors power being supplied from a power supply that supplies power for a first period or more, at the time of supplying power of a first power value or more that is necessary for first processing, and which outputs first notification when the supplied power is at the first power value or more; and a processing unit (30), which operates with the power supplied from the power supply, and when the first notification is received, which completes the first processing within the first period by transiting to a first operation state, wherein the first processing can be performed, from a standby state, wherein supply of power of the first power value or more is not needed.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: March 21, 2017
    Assignee: NEC Corporation
    Inventors: Shingo Takahashi, Nobuhide Yoshida
  • Patent number: 9599499
    Abstract: Technical solutions are described for predicting linepack delays. An example method includes receiving temporal sensor measurements of a first fluid-delivery pipeline network and generating a causality graph of the first fluid-delivery pipeline network. The method also includes determining a topological network of the stations based on the causality graph, where the topological network identifies a temporal delay between a pair of stations. The method also includes generating a temporal delay prediction model based on the topological network and predicting the linepack delays of a second fluid-delivery pipeline network based on the temporal delay prediction model, where a compressor station of the second fluid-delivery pipeline network compresses fluid based on the predicted linepack delays to maintain a predetermined pressure.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: March 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Harsh Chaudhary, Younghun Kim, Tarun Kumar, Abhishek Raman, Rui Zhang
  • Patent number: 9575135
    Abstract: Various aspects of the present disclosure are directed to monitoring battery cells. In accordance with various embodiments, a battery pack having a plurality of battery cells connected in series is monitored. Current is separately injected into individual ones of the plurality of battery cells, such as by operating a balancing circuit coupled across an individual cell, to inject current (e.g., positive or negative) into the cell. For each of the battery cells, an output is provided to indicate cell voltage of the battery cell responsive to the current injected therein. An output indicative of current through each of the battery cells is provided as well. From the respective outputs as corresponding to each individual cell, amplitude and phase characteristics of the current and voltage outputs for each of the cells are extracted to provide an indication of an impedance characteristic of the cell(s).
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: February 21, 2017
    Assignee: DATANG NXP SEMICONDUCTORS CO., LTD.
    Inventors: Johannes Petrus Maria van Lammeren, Matheus Johannes Gerardus Lammers
  • Patent number: 9575139
    Abstract: A novel method for real-time small-signal stability analysis for power electronic-based components in a power system. The method may be used to monitor a power system in real-time by perturbing the source side of an electronic-based component of the power system by injecting a current of about 0.5 to 1 percent of a nominal current of the power system at the source side, while simultaneously perturbing the load side of the power electronic-based component by varying the voltage at the load side. Time-domain results of the simultaneous perturbations may be transferred to frequency-domain results and the stability of the power system may be monitored by obtaining a Nyquist contour and employing Generalized Nyquist Criterion or unit circle criterion.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: February 21, 2017
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Mohamadamin Salmani, Chris S. Edrington
  • Patent number: 9574952
    Abstract: A pressure testing device for calculating a pressure in a flexible line comprises a housing unit, a force sensor mounted on the housing unit and a clamp assembly having a clamp mounted on the housing unit. The clamp is operable to compress the flexible line against the force sensor by a predetermined degree of deformation of the flexible line. The device includes a displacement sensor adapted to measure a displacement of the clamp. The device also includes a controller having a processor in communication with the force sensor and the displacement sensor, and a memory unit containing stored data. At the predetermined degree of deformation of the flexible line, the processor compares a first signal from the force sensor and a second signal from the displacement senor with the stored data to estimate the pressure within the flexible line.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: February 21, 2017
    Assignee: Custom Fluid Power Pty Ltd.
    Inventor: Liviu Schintee
  • Patent number: 9575138
    Abstract: A novel method for real-time small-signal stability analysis for power electronic-based components in a power system. The method may be used to monitor a power system in real-time by perturbing the source side of an electronic-based component of the power system by injecting a current of about 0.5 to 1 percent of a nominal current of the power system at the source side and perturbing the load side of the power electronic-based component by injecting a voltage of about 0.5 to about 1 percent of a nominal voltage of the power system at the load side and varying the voltage at the load side. Time-domain results of the perturbations may be transferred to frequency-domain results and the stability of the power system may be monitored by obtaining a Nyquist contour and employing Generalized Nyquist Criterion or unit circle criterion.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: February 21, 2017
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Mohamadamin Salmani, Chris S. Edrington
  • Patent number: 9568419
    Abstract: A method for analyzing a gas sample conveyed in a drilling fluid involves liberating the gas sample from the drilling fluid, irradiating the gas sample with infrared radiation spanning a wavelength range in the near-infrared range, detecting absorption spectra associated with irradiating the gas sample, and determining a composition of the gas sample from the absorption spectra. The gas sample includes one or more of methane, ethane, propane, and butane, the detected absorption spectra are associated with irradiating each of the one or more of methane, ethane, propane, and butane, and the composition includes a concentration of any one or more of the methane, ethane, propane, and butane.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: February 14, 2017
    Assignee: PASON SYSTEMS CORPORATION
    Inventors: Jason Alexander DeGreeve, Sean William Lyons Unrau, Marceau Ernest van Beurden, Ryan Henricus van Beurden