Patents Examined by Surekha Vathyam
  • Patent number: 7419574
    Abstract: Microfluidic devices according to embodiments of the present invention include an inlet port, an outlet port, and a channel or chamber having a non-uniform array of insulating features on one or more surfaces. Electrodes are provided for generation of a spatially non-uniform electric field across the array. A voltage source, which may be an A.C. and/or a D.C. voltage source may be coupled to the electrodes for the generation of the electric field.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: September 2, 2008
    Inventors: Eric B. Cummings, Yolanda Fintschenko, Blake Simmons
  • Patent number: 7341652
    Abstract: A system and method for capillary electrophoresis are provided for analyzing a macromolecule prepared from a complex liquid mixture. In particular applications, methods and apparatus are provided for separating and analyzing a solution containing a denatured macromolecule by employing a stationary capillary electrophoresis apparatus. An apparatus for capillary electrophoresis includes an inlet chamber and a capillary electrophoresis column. One end of the column is fixed at the interior of the inlet chamber. The column has a length of at least about 20 centimeters. Also included is a liquid source adapted for automatic control. The liquid source supplies a liquid sample through an input valve into the inlet chamber so that the sample is in fluid communication with the end of the column. A method for capillary electrophoresis includes automatically supplying the liquid sample to the apparatus.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: March 11, 2008
    Assignee: Groton Biosytems, LLC
    Inventor: George E. Barringer, Jr.
  • Patent number: 7329333
    Abstract: A capillary electrophoresis system comprises capillaries positioned in parallel to each other forming a plane. The capillaries are configured to allow samples to migrate. A light source is configured to illuminate the capillaries and the samples therein. This causes the samples to emit light. A lens is configured to receive the light emitted by the samples and positioned directly over a first group of the capillaries and obliquely over a second group of the capillaries. The light source is further configured to illuminate the second group of capillaries more than the first group of the capillaries such that amount of light received by the lens from the first group of capillaries is substantially identical to amount of light received from the second group of capillaries when an identical amount of the samples is migrating through the first and second group capillaries.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: February 12, 2008
    Assignee: Applera Corporation
    Inventors: Qingbo Li, Songsan Zhou, Changsheng Liu
  • Patent number: 7316768
    Abstract: A gas sensor comprises an electrically conductive housing including a shelf member and a chamber containing an electrolyte. A conductive cathode mounted on the shelf member has a plurality of holes therein and a conductive tail element. A gas permeable membrane overlying the cathode prevents electrolyte from escaping the chamber but allows gas to permeate the membrane. An anode within the chamber is in electrical contact with the electrolyte and the conductive housing. The tail element is adapted to be connected to the anode through an electrical circuit including the conductive housing.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: January 8, 2008
    Assignee: Advanced Micro Instruments, Inc.
    Inventors: Roland Aldridge, Steven Kirchnavy, Hurbert Q. Stedman
  • Patent number: 7309415
    Abstract: A gas sensor based on solid electrolyte is proposed for measuring a gas component in a gas mixture, having at least one sensitive region, which has a first means for producing a reaction gas from an additional gas component of the gas mixture. A second means is situated in the sensitive region of the gas sensor, using which the residual content of the reaction gas may be determined, after a reaction that takes place between the reaction gas and the gas component to be measured.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: December 18, 2007
    Assignee: Robert Bosch GmbH
    Inventors: Ulrich Alkemade, Bernd Schumann, Berndt Cramer, Marget Schuele, Thorsten Ochs, Sabine Thiemann-Handler
  • Patent number: 7309414
    Abstract: A method of measuring localized corrosion, using a multi-electrode array sensor. The method eliminates the effect of internal current in corroded electrodes, and thus provides a more accurate corrosion measurement. In one embodiment, the potential of a common node of the sensor is adjusted so that the sensor's most cathodic current is close to zero.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: December 18, 2007
    Assignee: Southwest Research Institute
    Inventor: Lietai Yang
  • Patent number: 7297241
    Abstract: The invention relates to a method and device for the monitoring of a medical microsample in the flow measuring cell of an analyzer with regard to position and absence of bubbles by means of an alternating voltage applied to the measuring cell, the measuring cell being provided with a multitude of electrode systems placed one behind the other, each system comprising a number of single electrodes for measuring a substance contained in the microsample by means of a measurement voltage which essentially is a DC voltage. To monitor the exact position of the microsample and/or to detect air bubbles in the area of each electrode system, the alternating voltage and the measurement voltage are simultaneously and directly applied to the single electrodes of the corresponding electrode system, and the measured AC component respectively the measured impedance gives a measure for the position of the microsample and the absence of bubbles.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: November 20, 2007
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Heinz Kontschieder, Herfried Huemer, Martin Hajnsek
  • Patent number: 7291253
    Abstract: The 3-mercaptopropylsulfonic acid (MPSA) breakdown product of the bis(sodiumsulfopropyl)disulfide (SPS) additive used in acid copper plating baths accelerates copper electrodeposition and can be detected by cyclic voltammetric stripping (CVS) analysis. In the presence of oxygen, MPSA decomposes rapidly in acid copper sulfate baths so that the CVS stripping peak area (Ar) decreases on successive cycles. The slope of a plot of Ar vs. CVS cycle number (or time) or logarithm of the CVS cycle number (or time) provides a measure of the initial MPSA concentration.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: November 6, 2007
    Assignee: ECI Technology, Inc.
    Inventors: Michael Pavlov, Eugene Shalyt, Peter Bratin
  • Patent number: 7282127
    Abstract: A microcapillary device includes a microcapillary tube. An anode is positioned at a first end of the microcapillary tube. A cathode is positioned at a second end of said microcapillary tube. A plurality of electric field reducing components are spaced apart along a length of the microcapillary tube. The anode and the cathode generate an electric field along the length of the microcapillary tube, and the plurality of electric field reducing components selectively reduce the electric field at spatial intervals along the length of the microcapillary tube.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: October 16, 2007
    Assignee: East Carolina
    Inventor: Martin Bier
  • Patent number: 7261800
    Abstract: A method of in situ electrophoresis of biological samples has the steps of preparing a sample plate and a gel plate, applying reagent onto the gel plate, moving an applicator to the sample plate so as to receive a sample onto the applicator, moving the applicator toward the gel plate such that at least a portion of the sample is loaded onto the gel plate, electrophoresing the gel plate, staining the gel plate and scanning the stained gel plate so as to electronically analyze a band in the gel of the gel plate.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: August 28, 2007
    Assignee: Helena Laboratories
    Inventor: Tokiya Nakazato
  • Patent number: 7211183
    Abstract: A method and apparatus for fractionation of a mixture of particles and for particle analysis are provided, in which LEAPS (“Light-controlled Electrokinetic Assembly of Particles near Surfaces”) is used to fractionate and analyze a plurality of particles suspended in an interface between an electrode and an electrolyte solution. A mixture of particles are fractionated according to their relaxation frequencies, which in turn reflect differences in size or surface composition of the particles. Particles may also be analyzed to determine their physical and chemical properties based on particle relaxation frequency and maximal velocity.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: May 1, 2007
    Assignee: BioArray Solutions Ltd.
    Inventors: Michael Seul, Sukanta Banerjee, Kairali Podual
  • Patent number: 7208071
    Abstract: A dissolved oxygen sensor having a cathode and anode immersed in an electrolyte is designed to provide a low background current in the sensor when a potential is applied to the cathode. The background current is maintained at a desired level by selecting the area and length of a channel or path of diffusion of residual oxygen in the electrolyte to the cathode. The area (A) of the diffusion channel in relation to its length (L) is selected to be at or below a selected ratio, A/L.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: April 24, 2007
    Assignee: Rosemount Analytical Inc.
    Inventor: Chang-Dong Feng