Patents Examined by Susan E Scharpf
  • Patent number: 10900364
    Abstract: A stator vane assembly for a gas turbine engine includes an inner vane support defining a first aperture, an outer vane support defining a second aperture, a stator having an inner end that extends through the first aperture and an outer end that extends through the second aperture, and a first bracket. The first bracket is operatively connected to the inner vane support and extends over the first aperture. The first bracket and the inner vane support defining a first pocket.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: January 26, 2021
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: William R. Edwards, Nicholas Hunnewell
  • Patent number: 10900439
    Abstract: A coated cylinder liner 20 comprises a wear resistant layer 22, such as a DLC coating, and a metallic adhesive layer 24, such as chromium or titanium, deposited on an inner surface 26 thereof. The layers 22, 24 each have a thickness tw, ta varying by not more than 5% along at least 70% of the length of the inner surface 26. The metallic adhesive layer 24 is deposited by sputtering a consumable metallic electrode 28 onto the inner surface 26. The sputtering can be magnetron sputtering. The consumable metallic electrode 28 can include a hollow opening 40 with orifices 50 for providing a carrier gas into the deposition chamber 52. In addition, the inner surface 26 of the cylinder liner 20 can provide the deposition chamber 52 by sealing a first opening 36 and second opening 38 of the cylinder liner 20.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: January 26, 2021
    Assignee: Tenneco Inc.
    Inventor: Robert Aharonov
  • Patent number: 10895217
    Abstract: Provided is a control apparatus for an internal combustion engine which can achieve required torque and avoid the risk of an accidental fire even in the case where an error occurs in final injection termination timing. A microcomputer calculates T902 which has been further advanced from T106 which precedes ignition timing by time required for vaporization of fuel injected into a cylinder of an internal combustion engine. The microcomputer determines whether final injection termination timing (T903) comes after T106 or T902. When it has been determined that final injection termination timing (T1204) comes after T106 or T902, the microcomputer controls an injector or an ignition device so as to secure time for vaporization of the fuel injected into the cylinder of the internal combustion engine while satisfying a fuel injection amount required in one combustion cycle.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: January 19, 2021
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Osamu Mukaihara, Masahiro Toyohara, Shigeyuki Yufu
  • Patent number: 10895236
    Abstract: Disclosed are a vehicle engine control apparatus and a vehicle engine control method. An engine of a vehicle is turned off after a predetermined time elapses when a user gets off the vehicle with a smart key after stopping the vehicle indoors (e.g., a garage or an underground parking lot) while the engine is in an ON state. The engine of the vehicle is maintained in the ON state when there is a user's request. Thus, the ON/OFF state of the engine of the vehicle is may be controlled depending on the user's situation.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: January 19, 2021
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventor: Min Woo Lee
  • Patent number: 10876417
    Abstract: An airfoil assembly may include a shroud and an airfoil. The shroud may include a first attachment arm, a second attachment arm, and a shroud rail extending from a first surface of the shroud. A first channel may be defined between the first attachment arm, the first surface, and the shroud rail and a second channel may be defined between the second attachment arm, the first surface, and the shroud rail. The airfoil may extend from a second surface of the shroud opposite the first surface. In various embodiments, a height of the shroud rail, as measured from the first surface of the shroud, is non-uniform.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: December 29, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: William R. Edwards, Charles H. Warner
  • Patent number: 10844800
    Abstract: A kill switch assembly for an internal combustion engine may include a housing, a first terminal carried by the housing and connected to a ground wire, a second terminal carried by the housing and connected to an engine microcontroller communication wire, and a kill switch. The kill switch may be carried by the housing, electrically connected to the first and second terminals, and manually operable by an operator to change the state of the electric switch to provide an engine stop signal to the engine microcontroller. The assembly may also include an electronic circuit carried by the housing, connected to the first and second terminals, and through the wires communicating with the engine microcontroller.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: November 24, 2020
    Assignee: Walbro LLC
    Inventors: Martin N. Andersson, Cyrus M. Healy, Gerald J. LaMarr, Jr., George M. Pattullo
  • Patent number: 10837485
    Abstract: Methods and systems are provided for a stabilizing device of a crankshaft. In one example, a method may comprise randomizing a shape of each fin of a plurality of fins and a space between each fin. Randomizing the fins may decrease noise production as a result of airflow generated by the fins.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: November 17, 2020
    Assignee: Ford Global Technologies, LLC
    Inventor: Jeremy Church
  • Patent number: 10837418
    Abstract: The invention provides an internal combustion engine control device capable of performing a stable combustion at a lean combustion limit. In an internal combustion engine control device that controls an internal combustion engine provided with an ignition device igniting an air-fuel mixture formed inside a combustion chamber, an intake side air temperature of the internal combustion engine is controlled in response to a compression ratio of the combustion chamber.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: November 17, 2020
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Kazuhiro Oryoji, Masayuki Saruwatari, Yoshihiro Sukegawa
  • Patent number: 10837417
    Abstract: A control apparatus controls the operation of a starter such that, after an idling stop is executed and before a request for starting an engine is subsequently issued, the control apparatus executes a preset which causes a pinion to engage a ring gear. A control apparatus controls the operation of a starter such that, after an idling stop is executed and before a request for starting an engine is subsequently issued, the control apparatus executes a preset which causes a pinion to engage a ring gear. It is determined that the preset condition has been cancelled, and the preset is again executed. In that case, the pinion is already engaged with the ring gear at the time point when a request for starting the engine is issued. In that way it is unnecessary for the control apparatus to push out the pinion after a start request is issued.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: November 17, 2020
    Assignee: DENSO CORPORATION
    Inventors: Yoshitomo Takeuchi, Atsuyuki Hiruma, Akira Yamada, Akihiro Imura, Takuro Nakaoka
  • Patent number: 10830659
    Abstract: The present invention relates to a method of controlling a positive-ignition internal combustion engine, in which the ignition advance is controlled (CON) by means of an estimation (EST) of the distribution of the knock measurements (MEAS). This estimation (EST) makes it possible to determine, for these measurements (MEAS), a confidence interval (qmin, qmax) of a predetermined quantile of the distribution of the knock measurements (MEAS).
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: November 10, 2020
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Maxime Jean, Thomas Leroy, Fabien Vidal-Naquet
  • Patent number: 10830168
    Abstract: A system may include at least one processor configured to receive a fuel signal indicative of an amount of fuel supplied to a cylinder of an internal combustion engine, receive an air signal indicative of a quantity of air supplied to the cylinder, and estimate a mean effective pressure in the cylinder based at least in part on the fuel signal and the air signal. The system may estimate an exhaust gas temperature for exhaust gas entering an exhaust manifold associated with the internal combustion engine, generate a rate of temperature change value for the exhaust manifold based at least in part on the exhaust gas temperature, generate an estimated exhaust manifold temperature based at least in part on the rate of temperature change value for the exhaust manifold, and estimate an exhaust gas temperature for exhaust gas exiting the exhaust manifold and entering a turbine of a turbocharger.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: November 10, 2020
    Assignee: Caterpillar Inc.
    Inventors: Christopher R. Gehrke, Travis E. Barnes, Anthony T. Petrou, David A. Pierpont
  • Patent number: 10823107
    Abstract: A control device (40) is connected to a differential pressure sensor (41), a navigation system (42), and a fuel injection valve (17). The control device (40) is configured to: execute a regeneration control of monitoring a purification situation (C1) and supplying unburned fuel (F2), which is injected from the fuel injection valve (17) and does not contribute to driving, to an exhaust gas purification system (20) in a case where the purification situation (C1) becomes a deteriorated situation (Ca); and execute a control of monitoring a road situation (C2) and stopping the regeneration control before the road situation (C2) actually becomes an accelerator off situation (Cb) in which an accelerator opening degree (?1) of an accelerator pedal (43) becomes off.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: November 3, 2020
    Assignee: ISUZU MOTORS LIMITED
    Inventor: Hideki Osada
  • Patent number: 10823049
    Abstract: A method of preventing surge for a vehicle may include detecting, by a controller, whether tip-out of an accelerator pedal is detected, comparing, by the controller, a difference value, obtained by subtracting an exhaust pressure from an intake pressure in a combustion chamber of an engine, with a predetermined reference value when the tip-out of the accelerator pedal is detected, driving, by the controller, a supercharger disposed at the rear end portion of a turbocharger at a predetermined number of revolutions per minute, which is lower than a normal number of revolutions per minute, when the difference value is greater than the reference value, and opening a bypass valve, which performs opening or closing operation and is disposed in a bypass line that diverges from an upstream point of the supercharger and is connected to a downstream point of the supercharger.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: November 3, 2020
    Assignees: Hyundai Motor Company, Kia Motors Corp.
    Inventors: Seung Eun Yu, Haeng Pyo Heo, Min Taek Kim
  • Patent number: 10808654
    Abstract: An intake system for an internal combustion engine includes a suction duct with a lateral bulge, an exhaust gas recirculation duct with a port into the suction duct, and a crankcase breather duct which extends into the lateral bulge in the suction duct.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: October 20, 2020
    Assignees: PIERBURG GMBH, FORD-WERKE GMBH
    Inventors: Dirk Vierkotten, Maximilian Flender, Christian Vigild, Andreas Kuske
  • Patent number: 10794336
    Abstract: Methods and systems are provided for an EGR cooler having first and second coolant jackets fluidly coupled to first and second coolant systems, respectively. In one example, the first and second coolant jackets are hermetically sealed from one another. Furthermore, the second coolant jacket protrudes into a portion of an exhaust gas passage directly downstream of an exhaust aftertreatment device.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: October 6, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Andreas Kuske, Hans Guenter Quix, Franz Arnd Sommerhoff, Joerg Kemmerling, Vanco Smiljanovski, Helmut Matthias Kindl, Hanno Friederichs
  • Patent number: 10781699
    Abstract: A rotor blade for a turbomachine, in particular in an aircraft engine, with a cooling arrangement for cooling a surface inside the rotor blade by means of a cooling medium, in particular cooling air. The rotor blade having an impingement cooling device with a plurality of impingement cooling openings for deflecting the cooling medium flowing in the interior of the impingement cooling device onto the surface that is to be cooled by means of impingement cooling inside the rotor blade and that is located outside of the impingement cooling device, so that the surface can be cooled by means of an impingement cooling through a cooling medium than exits from the impingement cooling openings, wherein the impingement cooling device is movably mounted with respect to the rotor blade.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: September 22, 2020
    Assignee: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG
    Inventor: Dimitrie Negulescu
  • Patent number: 10767581
    Abstract: A method for operating an internal combustion engine for a motor vehicle including receiving measurement signals of a cylinder pressure sensor and determining cylinder pressure fluctuations as a function of the received measurement signals of the cylinder pressure sensor. The method also includes increasing an exhaust gas recirculation rate of the internal combustion engine as a function of the determined cylinder pressure fluctuations until a predefined limiting value of the cylinder pressure fluctuations is reached. In addition, the method includes determining an actual value of the exhaust gas recirculation rate if the predefined limiting value of the cylinder pressure fluctuations is reached, and storing the determined actual value as a setpoint value for the exhaust gas recirculation rate of the internal combustion engine.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: September 8, 2020
    Assignee: Vitesco Technologies GmbH
    Inventor: Hong Zhang
  • Patent number: 10766357
    Abstract: In a fuel tank, a pressure regulator is placed at an outside of a sub-tank and regulates a pressure of fuel of a pressure-regulation path, which is discharged from a fuel pump and is fed toward an outside of the fuel tank. A fuel recovery passage portion recovers excess fuel, which becomes excess at the pressure-regulation path, to the sub-tank. The sub-tank has an opening at a location that is higher than the suction filter. The fuel recovery passage portion is inserted from the outside of the sub-tank into the inside of the sub-tank through the opening while a gap is formed between the fuel recovery passage portion and the opening, so that the fuel recovery passage portion has an excess fuel outlet that discharges the excess fuel at a location that is on an inner side of the opening where an inside of the sub-tank is placed.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: September 8, 2020
    Assignee: DENSO CORPORATION
    Inventors: Rui Adachi, Kiyomori Kobayashi, Norihiro Hayashi
  • Patent number: 10746283
    Abstract: An assembly is provided for a gas turbine engine. This assemble includes a stationary structure configured with a first side, a second side and a bore that extends through the stationary structure between the first side and the second side. The assembly also includes a fluid transfer tube extending within the bore and forming a plenum between a sidewall of the fluid transfer tube and the stationary structure. The fluid transfer tube is configured with a first end at the first side, a second end at the second side, a flowpath and an aperture. The flowpath is at least partially formed by the sidewall and extends through the fluid transfer tube between the first end and the second end. The aperture fluidly couples the flowpath with the plenum.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: August 18, 2020
    Assignee: Raytheon Technologies Corporation
    Inventor: Christopher T. Anglin
  • Patent number: 10738644
    Abstract: Coating systems for a cooled turbine blade tip, such as a metal turbine blade tip, are provided. The coating system includes an abrasive layer overlying the surface of the turbine blade tip. One or more buffer layers may additionally be disposed between an outer surface of the blade tip and the abrasive layer. The coated blade tip can be used with a ceramic matrix composite (CMC) shroud coated with an environmental barrier coating (EBC) to provide improved cooling to the tip so as to lengthen oxidation time of the abrasive layer and reduce blade tip wear. Methods are also provided for forming the cooled blade tip and applying the coating system onto the cooled turbine blade tip.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: August 11, 2020
    Assignee: General Electric Company
    Inventors: Jinjie Shi, Dennis Paul Dry, Christopher Edward Wolfe, Andres Jose Garcia-Crespo, Yun Zhu