Patents Examined by T. Tung
  • Patent number: 6277255
    Abstract: An electrochemical cell sensing circuit for an electrochemical cell having a working electrode, a counter electrode and a reference electrode in an electrolyte, which in use, when a gas to be analysed is introduced into the cell, generating a current between the counter electrode and the working electrode, and a potential at a position in the electrolyte is sensed by the reference electrode.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: August 21, 2001
    Assignee: Central Research Laboratories, Limited
    Inventors: Ian MacDonald Green, Michael Jackson
  • Patent number: 6277267
    Abstract: A method for measurement of nitrogen oxides using a gas sensor. To reliably measure nitrogen oxides, the sensor has a reference electrode representing a constant oxygen partial pressure, at least two electrode pairs, with common a electrode associated with each pair of electrodes, and solid electrolytes arranged between the two electrodes of an electrode pair directly at the electrodes. The solid electrolyte between a first electrode pair is gas-permeable, while the solid electrolyte between a second electrode pair is gastight, whereby the second electrode pair is adapated for potentiometric or amperometric measurement of nitrogen oxides, and the first electrode pair is adapted for application of a current or a voltage to pump oxygen. The second electrode of the second electrode pair is constructed as a reference electrode on the reference gas side of the solid electrolyte of the second electrode pair. The sensor also has electrical leads for connection and for take-away of electric measurement signals.
    Type: Grant
    Filed: January 3, 2000
    Date of Patent: August 21, 2001
    Assignee: Heraeus Electro-Nite International N.V.
    Inventors: Peter Van Geloven, Silvia Lenaerts, Patrick van de Voorde
  • Patent number: 6274016
    Abstract: A nitrogen oxide gas sensor wherein an alloy electrode of platinum and rhodium or a cermet electrode of platinum, rhodium, and zirconia or of a rhodium alloy and zirconia is used as the gas sensing electrode. The electrode of the sensor is suitable for measuring nitrogen oxide such as NO and NO2 in an exhaust gas.
    Type: Grant
    Filed: June 24, 1999
    Date of Patent: August 14, 2001
    Assignee: Kabushiki Kaisha Riken
    Inventors: Masaharu Hasei, Yongtie Yan, Akira Kunimoto
  • Patent number: 6270637
    Abstract: An electrochemical biosensor test strip with four new features. The test strip includes an indentation for tactile feel as to the location of the strips sample application port. The sample application port leads to a capillary test chamber, which includes a test reagent. The wet reagent includes from about 0.2% by weight to about 2% by weight polyethylene oxide from about 100 kilodaltons to about 900 kilodaltons mean molecular weight, which makes the dried reagent more hydrophilic and sturdier to strip processing steps, such as mechanical punching, and to mechanical manipulation by the test strip user. The roof of the capillary test chamber includes a transparent or translucent window which operates as a “fill to here” line, thereby identifying when enough test sample (a liquid sample, such as blood) has been added to the test chamber to accurately perform a test. The test strip may further include a notch located at the sample application port.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: August 7, 2001
    Assignee: Roche Diagnostics Corporation
    Inventors: William F. Crismore, Nigel A. Surridge, Daniel R. McMinn, Richard J. Bodensteiner, Eric R. Diebold, R. Dale Delk, David W. Burke, Jiaxiong Jason Ho, Robert Kitchel Earl, Brian A. Heald
  • Patent number: 6267872
    Abstract: Single-channel thin film devices and methods for using the same are provided. The subject devices comprise cis and trans chambers connected by an electrical communication means. At the cis end of the electrical communication means is a horizontal conical aperture sealed with a thin film that includes a single nanopore or channel. The devices further include a means for applying an electric field between the cis and trans chambers. The subject devices find use in applications in which the ionic current through a nanopore or channel is monitored where such applications include the characterization of naturally occurring ion channels, the characterization of polymeric compounds, and the like.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: July 31, 2001
    Assignee: The Regents of the University of California
    Inventors: Mark A. Akeson, David W. Deamer, Daniel Branton
  • Patent number: 6267857
    Abstract: The invention reduces the activation time of an oxygen sensor with a heater through rapid heating of an oxygen sensing element. A shaft-like heating member is inserted and fixed into an oxygen sensing element of a hollow shaft-like member while a terminal member intervenes therebetween. A heating portion is locally formed at an extreme end of the heating member. A surface of the heating portion is elastically pressed against an element inner wall, thereby establishing a laterally-abutting structure. A positioning projection is formed on an internal electrode connecting portion and projects toward the interior of the internal electrode connecting portion. The positioning projection is adapted to position the heating element within a hollow portion of the oxygen sensing element such that the axis thereof becomes substantially parallel to the axis of the hollow portion.
    Type: Grant
    Filed: June 1, 1999
    Date of Patent: July 31, 2001
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Shoji Akatsuka, Satoshi Ishikawa
  • Patent number: 6264892
    Abstract: Miniaturized planar column devices for use in a liquid phase separation apparatus are described. The devices include microstructures that have been fabricated by laser ablation in a variety of novel support substrates. Devices formed according to the methods of the invention include associated laser-ablated features required for function, such as on-device reservoirs or makeup flow compartments, analyte detection means and sample injection means. The miniaturized columns can be used in an apparatus intended for analysis of either small and/or macromolecular solutes in the liquid phase which employs chromatographic, electrophoretic or electrochromatographic separation means. The apparatus can include a variety of optional injection means, manifolds, keeper means, post column collection means, and combinations thereof.
    Type: Grant
    Filed: January 11, 2000
    Date of Patent: July 24, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: Patrick Kaltenbach, Sally A. Swedberg, Klaus E. Witt, Fritz Bek, Laurie S. Mittelstadt
  • Patent number: 6264824
    Abstract: A method and apparatus for the indentification of corrosion in a metal object is disclosed. The method comprises analyzing the statistical distribution of signals generated between two electrodes, typically exposed to the same corrosion conditions as the metal object, and preferably analyzes the skewness and kurtosis of the signals. Neural nets are preferably used in the analysis.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: July 24, 2001
    Assignee: Integriti Investments Ltd.
    Inventors: Stephen Anthony Reid, David Anthony Eden
  • Patent number: 6264825
    Abstract: The invention relates to compositions and methods useful in the acceleration of binding of target analytes to capture ligands on surfaces. Detection proceeds through the use of an electron transfer moiety (ETM) that is associated with the target analyte, either directly or indirectly, to allow electronic detection of the ETM.
    Type: Grant
    Filed: June 23, 1999
    Date of Patent: July 24, 2001
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Gary Blackburn, Stephen E. Creager, Scott Fraser, Bruce D. Irvine, Thomas J. Meade, Stephen D. O'Connor, Robert H. Terbrueggen, Jost G. Vielmetter, Thomas W. Welch
  • Patent number: 6261440
    Abstract: Provided are microparticle forms of carbon, carbon catalysts and carbon-containing electrically conductive materials which are covalently linked to peroxidase. The carbon:peroxidase conjugates are suitable for use as substrates in conventional electrodes. Surprisingly, the conjugates display very little sensitivity to known interfering substances and thus are suitable for use as interference free electrodes.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: July 17, 2001
    Assignee: Abbott Laboratories
    Inventors: Timothy P. Henning, Thomas G. Spring
  • Patent number: 6261429
    Abstract: A sensor element for an electrochemical sensor, in particular for determining the oxygen content in exhaust gases of an internal combustion engine. The sensor element has at least one measuring electrode exposed to a measuring gas, at least one reference electrode exposed to a reference gas, at least one heating device having one heating conductor and two heating conductor leads, and a reference gas channel. The heating conductor has at least two heating circuit trace segments outside the vertical projection of the reference gas channel, the two heating circuit trace segments being connected by a connecting segment routed over the reference gas channel. The circuit trace cross section of the connecting segment is larger than the cross section of one of the heating circuit trace segments.
    Type: Grant
    Filed: January 29, 1999
    Date of Patent: July 17, 2001
    Assignee: Robert Bosch GmbH
    Inventors: Olaf Jach, Lothar Diehl
  • Patent number: 6258234
    Abstract: Air fuel ratio sensor for use in an exhaust gas purification system for an internal combustion engine. The sensor has an outer and inner cover 12 and 13 for protection of lead wires 16, 18 and 19 to a detecting element 3 and a heater 5 of the sensor, a rubber seal for 2 for obtaining a sealing between the covers and the lead wires and a water repellent filter 36 for obtaining a seal between the inner and outer covers 12 and 13, while keeping an air ventilation capability of the space inside the covers. For receiving the lead wires 16, 18 and 19, the seal 2 is formed with holes 20 such that the minimum thickness between the holes and the minimum thickness between the hole and an outer surface of the seal is 1 mm or more. A crimping of the outer cover 12 is done so that a deformation of the seal 2 in a range between 10 to 20% of the outer diameter is obtained.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: July 10, 2001
    Assignee: Denso Corporation
    Inventors: Isao Watanabe, Michihiro Yamakawa, Masanori Fukutani, Toshihiro Sakawa, Nobuyuki Tsuji, Minoru Ohta
  • Patent number: 6258326
    Abstract: Reference fiducials for sample holders. The reference fiducials may be configured to provide information that facilitates sample handling and/or analysis. The sample holders may include microplates and biochips.
    Type: Grant
    Filed: September 18, 1998
    Date of Patent: July 10, 2001
    Assignee: LJL BioSystems, Inc.
    Inventor: Douglas N. Modlin
  • Patent number: 6258230
    Abstract: The present invention relates to a non-enzymatic disposable uric acid detecting electrode strip which directly detects the concentration of uric acid in liquid sample under a low operation voltage of below 400 mV and pH value from 7.0 to 10.0. When the electrode strip is applied to detect the concentration of uric acid in human body, it avoids interference signals caused from any other components in blood and will not be interfered by ascorbic acid unless the concentration of ascorbic acid increases to 15 times of its normal concentration in blood. Not only serum but also whole-blood can be taken as a sample for detecting the uric acid concentration thereof. The uric acid detecting electrode strip is modified by a water soluble redox electron mediator. The electrode strip is easy to carry and can be easily made, particularly mass-produced.
    Type: Grant
    Filed: April 21, 1999
    Date of Patent: July 10, 2001
    Assignee: Apex Biotechnology COrporation
    Inventors: Yen-Shih Shen, Chun-Lung Hsieh, Kun-Lieh Wu
  • Patent number: 6258253
    Abstract: The present invention provides a vapor corrosion cell for a real-time and quantitative measurement of corrosion of conductive materials in atmospheres containing chemically reactive gases and water vapor. Two prototypes are provided. Also provided are various applications of this apparatus in industry.
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: July 10, 2001
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Dennis D. Davis
  • Patent number: 6258229
    Abstract: A disposable electrode strip for testing a fluid sample including a laminated strip with a first and second end, a vent, an open path for receiving a fluid sample of less than one microliter beginning from the first end and connecting to the vent, a working electrode, a reference electrode and a pseudo-working electrode embedded in the laminated strip within the open path and proximate to the first end, a reagent matrix coextensive within the open path and covering the three electrodes, and conductive contacts located at the second end of the laminated strip.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: July 10, 2001
    Inventors: Handani Winarta, Xiaohua Cai, Fung Seto, Chung Chang Young
  • Patent number: 6254743
    Abstract: This invention relates generally to an electrically conductive valve metal mesh of extreme void fraction. More particularly the invention relates in a most important aspect to an application thereof for an electrode structure in such a way as to prevent the corrosion of steel, including reinforcing steel in concrete, by cathodic protection.
    Type: Grant
    Filed: December 24, 1990
    Date of Patent: July 3, 2001
    Assignee: Eltech Systems Corporation
    Inventors: John E. Bennett, Gerald R. Pohto, Thomas A. Mitchell
  • Patent number: 6254926
    Abstract: An oxygen sensor element includes a solid electrolyte having cavities on a surface thereof and an electrode formed on the surface of the solid electrolyte. In a method of producing the oxygen sensor element, a solution containing a noble metal compound for nucleus formation is first applied to an electrode forming portion of the solid electrolyte to form a coating film. Then, the coating film is heat-treated to form a nucleus forming portion where noble metal nuclei are deposited. Subsequently, metal plating is applied to the nucleus forming portion to form a plating film deeply entering the cavities. Thereafter, the plating film is burned to form the electrode deeply entering the cavities.
    Type: Grant
    Filed: July 26, 1999
    Date of Patent: July 3, 2001
    Assignee: Denso Corporation
    Inventors: Toru Katafuchi, Kiyomi Kobayashi, Naoto Miwa, Hiromi Sano, Toshitaka Saito
  • Patent number: 6254749
    Abstract: In a CO gas sensor composed of a CO gas sensing electrode 3 being made of Au or an Au alloy and a reference electrode 2 electrically connected to at least part of a surface of a solid electrolyte having an oxygen ion transfer property, which is superior in CO gas selectivity, in particular, reducing the affect of the co-existing oxygen to CO, and which works with a high precision at a high temperature, and in a CO gas measuring device using the gas sensor, the gas sensor being capable of determining a CO gas concentration by measuring a electromotive force change due to adsorption/oxidization of the carbon monoxide gas in the sensing electrode 3 when a constant current is caused to flow between the reference electrode 2 and the sensing electrode 3 or a current value caused by the oxidizing reaction of the carbon monoxide gas in the sensing electrode when a voltage is kept constant between the reference electrode 2 and the sensing electrode 3.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: July 3, 2001
    Assignee: NGK Insulators, Ltd.
    Inventors: Minoru Yokota, Takao Murase, Junichiro Mizusaki
  • Patent number: 6254750
    Abstract: A modified universal exhaust gas oxygen sensor, referred to herein as a CEGA sensor, is provided which can be used to measure the concentration of a variety of components of a gaseous fuel emission including CO, CO2, O2, H2, and H2O. The CEGA sensor employs at least one additional electrode on a ceramic substrate which possess a different catalytic activity relative to the electrodes that normally found on a UEGO sensor. The ceramic substrate may be made of any suitable ceramic and is preferably made of zirconia. The difference in catalytic activity between the additional electrode(s) and the electrodes native to the UEGO sensor create an oxygen gradient which enables a measure of combustion completeness to be calculated. In combination with an air/fuel ratio measured by the sensor, the concentrations of different components in the emission can be calculated.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: July 3, 2001
    Assignee: ECM Engine Control and Monitoring
    Inventors: Ronald S. Patrick, Fabio DeAmicis