Patents Examined by Tabassom Tadayyon-Eslami
  • Patent number: 10780456
    Abstract: The present invention relates to a method and a jig for forming a pattern, the method and the jig being capable of realizing various and unique pattern designs due to magnetic particles included in the magnetic ink being distributed in various densities according to intensity of the magnetic force. Disclosed is a method and a jig for forming a pattern by using magnetic ink and magnetic force, the method including: preparing a jig which generating magnetic force, applying magnetic ink on a surface of a substrate to form a print layer, disposing the substrate configured with the print layer above the jig, forming a magnetic pattern on the print layer by applying magnetic force generated from the jig, and drying the print layer.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: September 22, 2020
    Assignee: IMCT Co., LTD.
    Inventor: Jung Wook Kim
  • Patent number: 10784045
    Abstract: A technique relates to a method of forming a laminated multilayer magnetic structure. An adhesion layer is deposited on a substrate. A magnetic seed layer is deposited on top of the adhesion layer. Magnetic layers and non-magnetic spacer layers are alternatingly deposited such that an even number of the magnetic layers is deposited while an odd number of the non-magnetic spacer layers is deposited. The odd number is one less than the even number. Every two of the magnetic layers is separated by one of the non-magnetic spacer layers. The first of the magnetic layers is deposited on the magnetic seed layer, and the magnetic layers each have a thickness less than 500 nanometers.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: September 22, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Sathana Kitayaporn, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Joonah Yoon
  • Patent number: 10763038
    Abstract: A technique relates to a method of forming a laminated multilayer magnetic structure. An adhesion layer is deposited on a substrate. A magnetic seed layer is deposited on top of the adhesion layer. Magnetic layers and non-magnetic spacer layers are alternatingly deposited such that an even number of the magnetic layers is deposited while an odd number of the non-magnetic spacer layers is deposited. The odd number is one less than the even number. Every two of the magnetic layers is separated by one of the non-magnetic spacer layers. The first of the magnetic layers is deposited on the magnetic seed layer, and the magnetic layers each have a thickness less than 500 nanometers.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: September 1, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Sathana Kitayaporn, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Joonah Yoon
  • Patent number: 10741827
    Abstract: Methods for preparing an electrode for a secondary battery are provided herein. In some embodiments, the method includes coating a current collector with an electrode slurry to form a coating layer on the current collector, the electrode slurry including a binder, an electrode active material, a conductive material, and amorphous selenium nanoparticles, and a solvent; and drying the coating layer, wherein the drying vaporizes the amorphous selenium nanoparticles and forms a passageway in the coating layer.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: August 11, 2020
    Assignee: LG Chem, Ltd.
    Inventor: Young Hwan Lee
  • Patent number: 10692652
    Abstract: Magnetic fiber structures include a fiber and a plurality of permanent magnet particles carried by the fiber.
    Type: Grant
    Filed: June 5, 2016
    Date of Patent: June 23, 2020
    Assignee: The Boeing Company
    Inventors: John R. Hull, Michael Strasik, Mark S. Wilenski
  • Patent number: 10670936
    Abstract: Process for forming a multi-layer electrochromic structure, the process comprising depositing a film of a liquid mixture onto a surface of a substrate, and treating the deposited film to form an anodic electrochromic layer, the liquid mixture comprising a continuous phase and a dispersed phase, the dispersed phase comprising metal oxide particles, metal hydroxide particles, metal alkoxide particles, metal alkoxide oligomers, gels or particles, or a combination thereof having a number average size of at least 5 nm.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: June 2, 2020
    Assignee: KINESTRAL TECHNOLOGIES, INC.
    Inventors: Hye Jin Choi, John David Bass, Eric Lachman, Daniel Mark Giaquinta, Howard W. Turner, Ellen Murphy
  • Patent number: 10667404
    Abstract: Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, or cortical stimulation many purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow. Common flexible circuit fabrication techniques generally require that a flexible circuit electrode array be made flat. Since neural tissue is almost never flat, a flat array will necessarily apply uneven pressure. Further, the edges of a flexible circuit polymer array may be sharp and cut the delicate neural tissue. By applying the right amount of heat to a completed array, a curve can be induced.
    Type: Grant
    Filed: October 28, 2007
    Date of Patent: May 26, 2020
    Assignees: Second Sight Medical Products, Inc., Doheny Eye Institute
    Inventors: Robert Greenberg, Neil Talbot, Jordan Neysmith, Dilek Guven, James Little, Brian Mech, Mark Humayun
  • Patent number: 10658704
    Abstract: A method of manufacturing an electrode laminate, which includes an active material layer and a solid electrolyte layer formed on the active material layer, includes: an active material layer forming step of forming an active material layer; and a solid electrolyte layer forming step of forming a solid electrolyte layer on the active material layer by applying a solid electrolyte layer-forming slurry to the active material layer and drying the solid electrolyte layer-forming slurry. In this method, a surface roughness Ra value of the active material layer is 0.29 ?m to 0.98 ?m when calculated using a laser microscope.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: May 19, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kengo Haga, Junichiro Nishino, Norihiro Ose, Hajime Hasegawa, Mitsutoshi Otaki, Hiroki Kubo, Keisuke Omori
  • Patent number: 10629804
    Abstract: A magnetoresistance device has an MgO (magnesium oxide) layer provided between a first ferromagnetic layer and a second ferromagnetic layer. The device is manufactured by forming a film of the MgO layer in a film forming chamber. A substance whose getter effect with respect to an oxidizing gas is large is adhered to surfaces of components provided in the chamber for forming the MgO layer. The substance having a large getter effect is a substance whose value of oxygen gas adsorption energy is 145 kcal/mol or higher. Ta (tantalum), in particular, is preferable as a substance which constitutes the magnetoresistance device.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: April 21, 2020
    Assignee: Canon Anelva Corporation
    Inventors: Yoshinori Nagamine, Koji Tsunekawa, David Djulianto Djayaprawira, Hiroki Maehara
  • Patent number: 10562333
    Abstract: In a printed article, pigment flakes are magnetically aligned so as to form curved patterns in a plurality of cross-sections normal a continuous imaginary line, wherein radii of the curved patterns increase along the imaginary line from the first point to the second point. When light is incident upon the aligned pigment flakes from a light source, light reflected from the aligned pattern forms a bright image which appears to gradually change its shape and move from one side of the continuous imaginary line to another side of the continuous imaginary line when the substrate is tilted with respect to the light source.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: February 18, 2020
    Assignee: VIAVI SOLUTIONS INC.
    Inventors: Vladimir P. Raksha, John Hynes, Laurence Holden, Paul G. Coombs
  • Patent number: 10549492
    Abstract: The present disclosure refers to a method for manufacturing carbon fiber panels stiffened with omega stringers for the construction of aircraft structures, such as fuselage sections, wing panels, etc. One tubular pressure member is provided for each omega stringer of the structure to be manufactured, wherein the tubular pressure member is configured with the shape of the omega stringer. Each tubular pressure member is enclosed between the omega stringer and part of the laminate, and autoclave pressure is applied to the interior of the tubular pressure member, so that the tubular pressure member is used to consolidate the omega stringers and/or part of the laminate from the interior of these two elements, while these two elements are being co-cured or co-bonded in an autoclave. Imperfections on those internal surfaces such as resin wrinkles of the structure are reduced.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: February 4, 2020
    Assignee: Airbus Operations, S.L.
    Inventors: Gabriel Cruzado Parla, Fernando Munoz Ajenjo, Jose Cuenca Rincon, Maria Mora Medias
  • Patent number: 10541070
    Abstract: A method for forming a stabilized bed of magneto-caloric material is provided. The method includes aligning magneto-caloric particles within the casing while a magnetic field is applied to the magneto-caloric particles and then fixing positions of the magneto-caloric particles within the casing. A related stabilized bed of magneto-caloric material is also provided.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: January 21, 2020
    Assignees: Haier US Appliance Solutions, Inc., UT-Batelle, LLC
    Inventors: Michael Alexander Benedict, Ayyoub Mehdizadeh Momen
  • Patent number: 10391519
    Abstract: The present invention relates to the field of the protection of value documents and value commercial goods. In particular, the invention relates to methods of making an optical effect layer (OEL) associated with a substrate, the method comprising i) providing a substrate associated with a coating composition comprising magnetic or magnetizable pigment particles; ii) providing a permanent magnet assembly producing a first magnetic field; iii) providing an electromagnet assembly including a winding assembly and drive producing an oscillating or rotating second magnetic field that interacts with the first magnetic field to spin the permanent magnet assembly to rotate the first magnetic field; and iv) applying the first magnetic field while the first magnetic field rotates by spinning of the permanent magnet assembly to aggregately orient the magnetic or magnetizable pigment particles to create the optical effect layer. The invention also relates to apparatuses for creating an OEL.
    Type: Grant
    Filed: November 28, 2014
    Date of Patent: August 27, 2019
    Assignee: SICPA HOLDING SA
    Inventors: Pierre Degott, Mathieu Schmid, Claude-Alain Despland, Evgeny Loginov, Edgar Mueller
  • Patent number: 10373631
    Abstract: A method for protecting a magnetic head according to one embodiment includes applying an organic coating to a magnetic head using a product having an applicator portion for applying an organic coating to a magnetic head. The organic coating is on the applicator portion of the tape, and a lubricant is on a data portion of the tape. The lubricant has a different composition than the organic coating. Another method for protecting a magnetic head includes applying an organic coating to a magnetic head for reducing exposure of the head to oxidation promoting materials; and storing the magnetic head. Another method includes fabricating a tape having an applicator portion for applying an organic coating to a magnetic head for reducing exposure of the head to oxidation promoting materials; applying the organic coating to the applicator portion of the tape; and applying a lubricant to a data portion of the tape.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: August 6, 2019
    Assignee: International Business Machines Corporation
    Inventors: Richard Lionel Bradshaw, Icko E.Tim Iben, Wayne Alan McKinley, Lee Curtis Randall
  • Patent number: 10373850
    Abstract: A system for removing an oxide material from a surface of a substrate can include a substrate tray to receive the substrate, and a cooling body to receive the substrate tray. The system may include a first temperature control element configured to control a temperature of the substrate tray and a second temperature control element configured to control a temperature of the cooling body, where the first temperature control element and the second temperature control element can be independently controlled. A method for removing oxide material from a surface of a substrate can include providing the substrate on a substrate tray having heating elements, cooling the substrate by transferring heat from the substrate tray to a cooling body, depositing a halogen-containing material on the cooled substrate while the substrate is on the cooling body, and subsequently sublimating the halogen-containing material by heating the cooled substrate by transferring heat from the substrate tray to the substrate.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: August 6, 2019
    Assignee: ASM IP HOLDING B.V.
    Inventors: John Tolle, Eric R. Hill
  • Patent number: 10359804
    Abstract: The described embodiments relate generally to methods to form magnetic assemblies. In particular, extreme cold work (aka cold spray) is used to enhance magnetic properties of a steel alloy (most notably 316L stainless steel and others) that can then be formed into useful shapes and embedded within a substrate without undue machining operations.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: July 23, 2019
    Assignee: Apple Inc.
    Inventors: Bradley J. Hamel, Simon Regis Louis Lancaster-Larocque, Steven J. Osborne, Adam T. Garelli
  • Patent number: 10347913
    Abstract: The present invention provides a method for preparing a core-shell structured particle, the method using a continuous Couette-Taylor crystallizer in which a core reactant inlet, a shell reactant inlet, and a product outlet are sequentially formed on an outer cylinder along a flow direction of a fluid flowing in a Couette-Taylor fluid passage between the outer cylinder and an inner cylinder, wherein a core particle is primarily formed in the fluid passage by a core reactant supplied through the core reactant inlet; a shell layer is formed on a surface of the core particle to cover the core particle by a shell reactant supplied through the shell reactant inlet; and a core-shell structured particle in which the shell layer is formed on the circumference of the core particle, is discharged to the outside through the product outlet.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: July 9, 2019
    Assignees: LG Chem, Ltd., University-Industry Cooperation Group of Kyung Hee University
    Inventors: Woo Sik Kim, Khuong Dien Thai, Byung Chun Park, Seong Hoon Kang, Wang Mo Jung, Hong Kyu Park
  • Patent number: 10347901
    Abstract: A method of preparing an electrode for a lithium-ion battery includes mixing a magnetic, electrically conductive material with a lithium conductive polymer; forming tubes of the polymer and magnetic, electrically conductive material; mixing the tubes with a slurry of an electrode material; coating a current collector with the slurry; and applying a magnetic field to the slurry to align the tubes within the slurry in relation to the current collector. The aligned tubes form electrical and ionic conductive pathways within the slurry. The tubes have a length less than half a thickness of the slurry.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: July 9, 2019
    Assignee: Nissan North America, Inc.
    Inventors: Ying Liu, Taehee Han, Yoshitaka Uehara
  • Patent number: 10347855
    Abstract: A method of making carbon nanotube composite layer includes following steps. A first suspension having a number of semiconductor particles is formed. The number of semiconductor particles are deposited on a substrate. A second suspension comprising a number of carbon nanotubes is provided. The number of carbon nanotubes in the second suspension are deposited on the substrate with the number of semiconductor particles.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: July 9, 2019
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 10348017
    Abstract: A process is disclosed for coating a substrate. The process includes providing a substrate having at least one free surface; depositing a first layer of a first material on the free surface of the substrate; depositing a second layer of a second material, different from the first material, on the first layer; depositing a third layer of a third material, different from the first and second materials, on the second layer; depositing a protective layer of a fourth material, different from the first, second and third materials, on the third layer; and performing a reflow of at least the second and third layers from the first, second, and third layers, by transfer of heat through the thermal contact on the protective layer, such that the protective layer prevents oxidation of at least the third layer.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: July 9, 2019
    Assignee: Tyco Electronics France SAS
    Inventor: Alain Bednarek