Patents Examined by Tammie K. Heller
  • Patent number: 8868168
    Abstract: A system for heart performance characterization and abnormality detection includes an interface for receiving signal data representing an electrical signal indicating electrical activity of a patient heart over multiple heart beat cycles. A signal processor uses the received signal data in calculating at least one of, (a) a first signal characteristic value substantially comprising a ratio of a time interval from S wave to T wave, to a time interval from Q wave to S wave and (b) a second signal characteristic value substantially comprising a ratio of a T wave base voltage from a peak of a T wave to a zero base reference voltage, to an R wave base voltage from a peak of an R wave to a zero base reference voltage. A comparator compares at least one of the first and second characteristic values with a threshold value to provide a comparison indicator.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: October 21, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Hongxuan Zhang
  • Patent number: 8868187
    Abstract: Systems and methods for determining depth of discharge for implantable device batteries are provided. One aspect of this disclosure relates to a method for determining depth of discharge for a battery in an implantable medical device. Voltage recovery of the battery is measured subsequent to a predetermined event. Measured voltage recovery data is stored in a database adapted to store data for one or more devices. Measured voltage recovery data is compared with stored voltage recovery data to determine battery depth of discharge. According to various embodiments, battery capacity consumed is measured using a coulometer and using a capacity-by-voltage device. Measured battery capacity consumed is combined with measured voltage recovery data using a predetermined weighted average, and the combined data is stored in the database. The stored data is used to determine battery depth of discharge, according to an embodiment.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: October 21, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Rajesh K. Gandhi, Michael J. Root
  • Patent number: 8855765
    Abstract: The present disclosure pertains to methods, devices and systems for detection of a lead-related condition in a medical electrical lead. In accordance with the disclosure, a physiological waveform interpreter module embedded within the lead functions to sense the occurrence of a cardiac event and to generate a minimal impact signal. In an example implementation, the physiological waveform interpreter module is disposed proximate to the sensing site or vicinity of cardiac signals. The physiological waveform interpreter module transmits the minimal impact signal that may include one or more predetermined properties to a remotely located lead monitoring module upon sensing a cardiac event. The lead monitoring module receives and processes the minimal impact signal to determine whether a cardiac depolarization has occurred and simultaneously verify the integrity of the transmission medium.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: October 7, 2014
    Assignee: Medtronic, Inc.
    Inventors: Thomas H. Spear, Nancy M. Germanson, Patrick D. Miller
  • Patent number: 8855781
    Abstract: A remotely programmable personal device, in particular a programmable implantable medical device, e.g., a cardiac pacemaker, a defibrillator, a cardioverter or the like. A system for remote programming of such a personal medical device and a method for remote programming of a programmable personal device.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: October 7, 2014
    Assignee: BIOTRONIK CRM Patent AG
    Inventor: Thomas Doerr
  • Patent number: 8855764
    Abstract: A single-chamber implantable device for detecting a patient's atrial activity using a monobody lead is disclosed. The monobody lead (10) includes a ventricular coil (16), a supraventricular coil (18), a distal electrode (14) forming three electrodes for detecting depolarization signals. A generator (12) of the implantable device collects a first unipolar signal (20) between the ventricular coil and the generator housing and a second unipolar signal (22) between the supraventricular coil and the generator housing. An independent component analysis is performed to the detected depolarization signals to determine an estimated atrial activity signal from the first and second unipolar signals.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: October 7, 2014
    Assignee: Sorin CRM S.A.S.
    Inventors: Paola Milpied, Christine Henry
  • Patent number: 8843216
    Abstract: An implantable electrode array includes an elongated carrier (20) and a plurality of electrodes mounted within the carrier. A actuator adjusts the curvature of the carrier and can be controlled by varying an electric potential applied to the actuator. The actuator is based on an electrochemical cells and may be a conducting polymer based actuator.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: September 23, 2014
    Assignee: Cochlear Limited
    Inventors: Gordon Wallace, Geoff Spinks, Dezhi Zhou, Claudiu Treaba, Peter Gibson, Elaine Saunders, Jin Xu, Robert Cowan
  • Patent number: 8838240
    Abstract: Systems and methods provide for sensing, during an event of tachycardia, hemodynamic signals concurrently from at least two spatially separated locations within a patient, and quantifying a spatial relationship between the hemodynamic signals. Hemodynamic stability or state of the patient during the tachycardia event is determined based at least in part on the quantified spatial relationship. One or more anti-tachycardia therapies to treat the tachycardia may be selected based at least in part on the determined stability or state of patient hemodynamics, and the selected one or more anti-tachycardia therapies may be delivered to treat the tachycardia. The hemodynamic signals may comprise at least two, or a mixed combination, of cardiac impedance signals, cardiac chamber pressure signals, arterial pressure signals, heart sounds; and acceleration signals.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: September 16, 2014
    Assignee: Cardiac Pacemakers Inc.
    Inventors: Dan Li, Krzysztof Siejko, Abhilash Patangay
  • Patent number: 8825161
    Abstract: An implantable medical device includes a housing defining a hermetically sealed chamber and includes a diaphragm portion having a first resonance frequency, an acoustic communication circuit within the chamber, and an acoustic transducer within the chamber. The transducer includes a substantially rigid pin member attached to an inner surface of the diaphragm portion, and an active portion coupled to the pin member. The active portion has a second resonant frequency and includes a piezoelectric element electrically coupled to the acoustic communication circuit. The diaphragm portion and the active transducer portion may be configured such that the first and second resonance frequencies are substantially equal.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: September 2, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Bin Mi, Lawrence D. Swanson, Mark S. Bartrum
  • Patent number: 8825180
    Abstract: A multi-conductor medical electrical lead comprises a connector located at a proximal end of the lead, one or more electrodes located at a distal end of the lead and a co-radial multi-conductor coil connecting the connector with the electrode(s), wherein the coil has a lead body region with co-radially wound conductors and has an inductance greater than or equal to approximately 1.5 ?H.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: September 2, 2014
    Assignee: Medtronic, Inc.
    Inventors: Ryan T. Bauer, John L. Sommer
  • Patent number: 8825175
    Abstract: Techniques for adjusting stimulation are disclosed. A medical device measures an impedance associated with one or more electrodes, e.g., the impedance presented to the medical device by a total electrical circuit that includes the one or more electrodes, the conductors associated with the electrodes, and tissue proximate to the electrodes. The medical device stores at least one patient-specific relationship between impedance and a stimulation parameter, and adjusts the value of the stimulation parameter based on the measured impedance according to the relationship. The medical device may store multiple relationships, and select one the relationships based on, for example, an activity level of the patient, posture of the patient, or a current stimulation program or electrode combination used to deliver stimulation. By adjusting a stimulation parameter, such as amplitude, according to such a relationship, the stimulation intensity as perceived by the patient may be kept substantially constant.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: September 2, 2014
    Assignee: Medtronic, Inc.
    Inventor: Gary W. King
  • Patent number: 8818517
    Abstract: Information can be stored in a cochlear stimulation system by determining an item of patient specific information, transferring the item of patient specific information to an implantable portion of the cochlear stimulation system, and permanently storing the item of patient specific information in the implantable portion of the cochlear stimulation system. The item of patient specific information can comprise a parameter for use in generating a stimulation current. The implantable portion of the cochlear stimulation system also can be configured to permanently store one or more items of patient specific information in an alterable fashion. Further, an item of patient specific information can be retrieved from the implantable portion of the cochlear stimulation system. Additionally, an item of non-patient specific information for use in processing a received acoustic signal can be determined and permanently stored in an external portion of the cochlear stimulation system.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: August 26, 2014
    Assignee: Advanced Bionics AG
    Inventors: Michael A. Faltys, Timothy J. Starkweather, Anthony K. Arnold
  • Patent number: 8818513
    Abstract: An embodiment of a baroreflex stimulator comprises a pulse generator to provide a baroreflex stimulation signal through an electrode, and a modulator to modulate the baroreflex stimulation signal based on a circadian rhythm template. According to an embodiment of a method for operating an implantable medical device, comprising a baroreflex stimulation therapy is applied at a stimulation intensity using a baroreflex stimulator in the implantable medical device, and the baroreflex stimulation therapy is modulated based on a circadian rhythm template stored within the implantable medical device. Modulating the baroreflex stimulation therapy includes using the circadian rhythm template to change the stimulation intensity to mimic natural blood pressure fluctuations during the day.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: August 26, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Imad Libbus
  • Patent number: 8812110
    Abstract: An implantable medical device (IMD) that can be wirelessly connected to user interface by which a patient can enter values of selected control parameters for controlling the IMD whereas other control parameters are not accessible via said user interface and can only be modified by a physician or other authorized personnel.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: August 19, 2014
    Assignee: Biotronik CRM Patent AG
    Inventor: Benoit Veillette
  • Patent number: 8812108
    Abstract: Various system embodiments comprise a myocardial stimulator, at least one sensor adapted for use in detecting heart rate to determine heart rate turbulence (HRT), and a controller connected to the myocardial stimulator and the at least one sensor. The myocardial stimulator is adapted to deliver pacing pulses through at least one electrode to provide cardiac pacing. The controller is adapted to intermittently deliver a sequence of stress-inducing pacing pulses adapted to increase sympathetic tone during the stress-inducing pacing. The controller is further adapted to determine HRT from the detected heart rate to assess cardiac stress to the stress-inducing pacing pulses, and adjust at least one parameter of the stress-inducing pacing pulses to adjust cardiac stress if the cardiac stress to the stress-inducing pacing pulses is undesirable.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: August 19, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Shantha Arcot-Krishnamurthy
  • Patent number: 8801590
    Abstract: In a catheter (2) to assist the performance of a heart (1) with at least one pump (7), the pump is formed as a rotary pump at the distal end of the catheter (2), the rotor (6) lying distally on the outer side being coupled via a magneto coupling with a drive wheel (21), formed as a hydraulically or pneumatically operated paddle wheel, arranged inside the catheter (2). The driving fluid is supplied to the paddle wheel via a lumen (22) of the catheter (2) and is carried off via a further lumen (23) of the catheter.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: August 12, 2014
    Assignee: Miracor Medical Systems GmbH
    Inventor: Werner Mohl
  • Patent number: 8790267
    Abstract: A method of processing a signal pertaining to at least one electrical property of an organ of a subject is disclosed. The method comprises determining a physiological condition of the subject, selecting a frequency band, filtering the signal according to the frequency band, and dynamically adapting the frequency band in response to a change in the physiological condition.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: July 29, 2014
    Assignee: Cheetah Medical, Inc.
    Inventors: Hanan Keren, Yoav Avidor, Pierre Squara, Daniel Burkhoff, Baruch Levy
  • Patent number: 8790272
    Abstract: A method for determining cardiac parameters of a subject includes receiving a signal from a thoracocardiograph (TCG) sensor. The signal is sensitive to positions and/or motions of an anterior chest wall of the subject and include a cardiac component, a respiratory component, and noise and/or artifact components. The method also includes receiving one or more electrocardiogram (ECG) signals and filtering the received TCG signal to limit one or more of the respiratory component and the noise and/or artifact components. The filtering includes one or more of wavelet de-noising, non-linear filtering, and state space filtering. The method further includes ensemble averaging thefiltered TCG signal. Ensemble members are triggered by occurrence of one or more selected fiducial points determined in the ECG signal. Additionally, the method includes extracting parameters of cardiac functioning from the ensemble averaged signal.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: July 29, 2014
    Assignee: adidas AG
    Inventors: Marvin Sackner, Lance Myers, Desmond B. Keenan, Dana Michael Inman
  • Patent number: 8788043
    Abstract: Methods of locating an optimal site within a brain of a patient for deep brain stimulation include positioning a guiding cannula in a lumen of a main cannula, passing a microelectrode through a lumen of the guiding cannula into the brain, adjusting an insertion depth and a longitudinal angle of the guiding cannula such that the microelectrode locates the optimal site for the deep brain stimulation, and passing a distal end of a macroelectrode or a deep brain stimulation lead through the lumen of the main cannula and into the brain at the optimal site.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: July 22, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Zdzislaw B. Malinowski, Salomo Siilas Murtonen
  • Patent number: 8781595
    Abstract: This disclosure describes a chopper mixer telemetry circuit for use in a wireless receiver. The receiver may be located in an implantable medical device (IMD) or external programmer. The chopper mixer telemetry circuit may include a mixer amplifier that operates as a synchronous demodulator to provide selective extraction of wireless signals received from a transmitter while suppressing out-of-band noise that can undermine the reliability of the telemetry link between an IMD or programmer and another device. The mixer amplifier may utilize parallel signal paths to convert the received telemetry signal into an in-phase (I) signal component and a quadrature (Q) signal component and recombine the I and Q signal components to reconstruct the total signal independently of the phase mismatch between the transmitter and receiver. Each signal path may include a chopper-stabilized mixer amplifier that amplifies telemetry signals within a desired band while suppressing out-of-band noise.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: July 15, 2014
    Assignee: Medtronic, Inc.
    Inventors: John J. Grevious, Timothy J. Denison
  • Patent number: 8774932
    Abstract: A data collection system collects and stores physiological data from an ambulatory patient at a high resolution and/or a high data rate (“more detailed data”) and sends a low-resolution and/or downsampled version of the data (“less detailed data”) to a remote server via a wireless network. The server automatically analyzes the less detailed data to detect an anomaly, such as an arrhythmia. A two-tiered analysis scheme is used, where the first tier is more sensitive and less specific than the second tier. If the more sensitive analysis detects or suspects the anomaly, the server signals the data collector to send more detailed data that corresponds to a time period associated with the anomaly. The more specific second tier analyses the more detailed data to verify the anomaly. The server may also store the received data and make it available to a user, such as via a graphical or tabular display.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: July 8, 2014
    Assignee: Infobionic, Inc.
    Inventor: Michael Fahey