Patents Examined by Tanisha Diggs
  • Patent number: 11760883
    Abstract: A preparation method of a cube-like ZnSnO3 composite coated with highly graphitized fine ash comprises steps: S1: with the gasified fine slag of pulverized coal as a raw material, preparing the fine ash by adopting a three-step acidification method; and S2: adding the fine ash prepared in the S1 into a container filled with distilled water, ultrasonically dispersing for 20-40 min, adding equal molar masses of SnCl4·5H2O and (Zn(NO3)·6H2O respectively, uniformly stirring, dropwise adding ammonia into the mixed solution and magnetically stirring until the pH value of the mixed solution is 12, heating the mixed solution, washing the product obtained with deionized water and ethanol for 2-4 times, and finally drying to obtain a ZnSnO3@fine composite. With the dielectric property and conductivity adjusted, the composite prepared reveals a good impedance matching performance and an improved MA performance.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: September 19, 2023
    Assignees: AnHui University of Science and Technology, Institute of Energy, Hefei Comprehensive National Science Center
    Inventors: Shengtao Gao, Yuanchun Zhang, Chengli Wu, Hanxu Li
  • Patent number: 11760959
    Abstract: The invention is a detergent solution for cleaning a receptacle for milk or liquid milk-derived products, the detergent solution comprising water, one or more types of surfactant and an odour absorbing compound. The surfactants are provided to dissolve greasy milk-based residues from the receptacle and the odour absorbing compound is provided to neutralise odours produced by any remaining milk-based residues not removed by the surfactants. The detergent solution is water-based so that it can be rinsed off easily in a sink in the home. The detergent solution is particularly suited to plastic receptacles because plastic is more prone to accumulating mal-odour producing bacteria. This is because a plastic surface is more porous than glass so it is more difficult to remove greasy residues from a plastic surface and therefore grease can build up in the pores, out of the reach of surfactants, and provide a place for odour-producing bacteria to grow.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: September 19, 2023
    Assignee: NIMBLE BABIES LIMITED
    Inventor: Von Ryan Sy
  • Patent number: 11728482
    Abstract: The present invention features a new way of doping layered cathode materials in lithium ion batteries. Using a “high entropy” doping strategy, more than four impurity elements can be introduced to the host materials. The present invention applies this high entropy doping strategy to a high nickel content layered oxide material and a lithium-manganese rich material. This new high entropy doping strategy allows the layered oxide materials used in the positive electrode of lithium ion battery to achieve high energy density, long life cycle and reduced reliance on the expensive and toxic cobalt, all of which are desired attributes for improving the performance of lithium ion batteries and reducing their cost.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: August 15, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Huolin Xin
  • Patent number: 11685668
    Abstract: The present invention provides a method for producing a manganese-doped nickel molybdate electrode material including mixing a nickel salt solution with a manganese salt solution to form a mixture; adding a molybdate solution into the mixture and being subject to a thermal reaction; and obtaining the manganese-doped nickel molybdate electrode material after washing and drying of the reaction product. The nickel salt includes one or more of nickel nitrate, nickel chloride, and nickel acetate; the manganese salt includes one or more of manganese chloride, manganese nitrate, and manganese sulfate; and the molybdate includes one or more of sodium molybdate or ammonium molybdate. The present method utilizes a single reaction to produce a Mn-doped NiMoO4 electrode material, which does not require using nickel molybdate as an intermediate product. The method simplifies the preparation process and makes it easy to be adjusted, thereby improving the electrochemical properties of the electrode material.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: June 27, 2023
    Assignee: Changzhou University
    Inventors: Haiqun Chen, Qun Chen, Guangyu He, Junwu Zhu, Xiaowei Yang, Yongsheng Fu, Weidong Chen, Hanming Wang, Dachuan Yao, Yitao Zhao, Jingjing Yuan, Ling Jiang, Qingli Hao
  • Patent number: 11679291
    Abstract: Disclosed is a mixture comprising the compound Z-1-chloro-2,3,3,3-tetrafluoroprop-1-ene and at least one additional compound selected from the group consisting of HFOs, HFCs, HFEs, CFCs, CO2, olefins, organic acids, alcohols, hydrocarbons, ethers, aldehydes, ketones, and others such as methyl formate, formic acid, trans-1,2 dichloroethylene, carbon dioxide, cis-HFO-1234ze+HFO-1225yez; mixtures of these plus water; mixtures of these plus CO2; mixtures of these trans 1,2-dichloroethylene (DCE); mixtures of these plus methyl formate; mixtures with cis-HFO-1234ze+CO2; mixtures with cis-HFO-1234ze+HFO-1225yez+CO2; mixtures with cis-HFO-1234ze+HFC-245fa; and azeotrope or azeotrope-like compositions. Also disclosed are methods of using the compositions as blowing agents, solvents, heat transfer compositions, aerosol propellant compositions, fire extinguishing and suppressant compositions.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: June 20, 2023
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventors: Mark L. Robin, Barbara Haviland Minor, Konstantinos Kontomaris, Ernest Byron Wysong, Jeffrey B. Sowder
  • Patent number: 11673903
    Abstract: A pure composition comprises a monoalkyltin trialkoxide compound represented by the chemical formula RSn(OR?)3 or a monoalkyl tin triamide compound represented by the chemical formula RSn(NR?2)3 and no more than 4 mole % dialkyltin compounds relative to the total tin amount, where R is a hydrocarbyl group with 1-31 carbon atoms, and wherein R? is a hydrocarbyl group with 1-10 carbon atoms. Methods are described for the formation of the pure compositions. A solid composition comprises a monoalkyl triamido tin compound represented by the chemical formula RSn—(NR?COR?)3, where R is a hydrocarbyl group with 1-31 carbon atoms, and where R? and R? are independently a hydrocarbyl group with 1-10 carbon atoms. The compositions are suitable for the formation of resist compositions suitable for EUV patterning in which the compositions have a high EUV absorption.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: June 13, 2023
    Assignee: Inpria Corporation
    Inventors: Joseph B. Edson, Thomas J. Lamkin, William Earley, Truman Wambach
  • Patent number: 11670760
    Abstract: The present invention is directed towards a process for making a lithiated transition metal oxide, said process comprising the following steps: (a) providing a precursor selected from mixed oxides, hydroxides, oxyhydroxides, and carbonates of nickel and at least one transition metal selected from manganese and cobalt, wherein at least 45 mole-% of the cations of the precursor are Ni cations, (b) mixing said precursor with at least one lithium salt selected from LiOH, Li2O, Li2CO3, and LiNO3, thereby obtaining a mixture, (c) adding at least one phosphorus compound of general formula (I) XyH3-yPO4??(I) wherein X is selected from NH4 and Li, y is 1 or 2, to the mixture obtained in step (b), wherein steps (b) and (c) may be performed consecutively or simultaneously, (d) treating the mixture so obtained at a temperature in the range of from 650 to 950° C.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: June 6, 2023
    Inventors: Aleksei Volkov, Martin Schulz-Dobrick, Simon Schroedle, Jordan Lampert
  • Patent number: 11655334
    Abstract: Disclosed herein is a very efficient method to make 5-(alkoxycarbonyl)furan-2-carboxylic acids (ACFC) from feedstocks comprised of furoates. When a feedstock comprised of methyl 5-methylfuran-2-carboxylate (MMFC) is used a product comprised of (5-(methoxycarbonyl)furan-2-carboxylic acid (MCFC) is obtained in high yield.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: May 23, 2023
    Assignee: Eastman Chemical Company
    Inventor: Mesfin Ejerssa Janka
  • Patent number: 11657925
    Abstract: A method of making a composite material includes disposing a carbon-based particulate material, such as graphene or carbon nanotubes, in an activation solution and activating surfaces of the carbon-based particulate material using the activation solution. Once the surfaces of the carbon-based particulate material have been activated, a metallic coating is applied to the activated surfaces to form a composite material. The composite material is then recovered as a particulate material formed having carbon-based particulate material with a metallic coating that is suitable for fusing together for forming electrical conductors, such as with an additive manufacturing technique.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: May 23, 2023
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Ying She, Sameh Dardona, Wayde R. Schmidt
  • Patent number: 11651868
    Abstract: The present invention is an electrically conductive polymer that is stable with respect to both time and environmental conditions. Most electrically conductive polymers have bulk resistance that varies (increases) over time. The current electrically conductive polymers also vary when they are exposed to harsh environments. The time and environmental variability is attributable to both the type of fiber and the type of coating used. The present invention uses stainless steel fibers that have an outer most coating that is one of tin, tin-lead, tin-silver, tin-palladium, tin-silver-palladium, and silver-palladium. The coating comprises 5%-40%, by weight, of the coating fiber. The coated fiber comprises 25%-35%, by weight, of the electrically conductive polymer. The bulk polymer is at least one of polypropylene (“PP”), polycarbonate (“PC”), acrylonitrile butadiene styrene (“ABS”), polyethylene (“PE”), polyether ether ketone (“PEEK”), and polyethylene terephthalate (“PET”).
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: May 16, 2023
    Assignee: Global Inventive Consulting Inc.
    Inventors: Slobodan Pavlovic, Mohamad Zeidan
  • Patent number: 11646408
    Abstract: The positive electrode active substance for a lithium secondary battery includes a mixture of a lithium cobalt composite oxide particle and an inorganic fluoride particle. The method for producing a positive electrode active substance for a lithium secondary battery includes a first step of subjecting a lithium cobalt composite oxide particle and an inorganic fluoride particle to a mixing treatment to thereby obtain a mixture of the lithium cobalt composite oxide particle and the inorganic fluoride particle. The lithium secondary battery uses, as a positive electrode active substance, the positive electrode active substance for a lithium secondary battery of the present invention.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: May 9, 2023
    Assignee: NIPPON CHEMICAL INDUSTRIAL CO., LTD.
    Inventors: Masahiro Kikuchi, Tomonao Naruhashi, Minoru Fukuchi
  • Patent number: 11637273
    Abstract: A preparation method of silicon-based composite negative electrode material for a lithium battery includes the following steps: forming steam from a raw material A containing Si and a reducing substance raw material B capable of reacting to generate a silicate under a vacuum heating condition, condensing and depositing in a deposition system after a reaction, and then carrying out carbon coating to obtain the silicon-based composite material. A certain amount of alloy is added into the raw material B, so that a proportion of a crystal region in the silicon-based composite material can be reduced, and the initial coulombic efficiency and the cycling stability of the negative electrode material are further improved.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: April 25, 2023
    Assignee: BEIJING IAMETAL NEW ENERGY TECHNOLOGY CO., LTD
    Inventors: Yuguo Guo, Linbo Huang, Quan Xu, Yaxia Yin, Fengshu Yue, Jun Yao, Anguang Zhao
  • Patent number: 11628589
    Abstract: The invention relates to mixtures containing, as component (A) ammonium polyphosphate and, as component (B) a soluble ionic compound which contains sulfate and/or is capable of releasing sulfate ions. The invention also relates to a method for producing such mixtures and to the use thereof.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: April 18, 2023
    Assignee: Clariant International Ltd
    Inventor: Andreas Termath
  • Patent number: 11606889
    Abstract: Provided is carbon material filler for an electromagnetic shield, which includes a graphitizable carbon material to be mixed into a molding material in order to absorb electromagnetic waves, the carbon material filler for an electromagnetic shield satisfying (1) to (3): (1) A spacing d002 of a 002 plane of the graphitizable carbon material measured through X-ray diffraction measurement (XRD) is at least 0.338 nm. (2) A relative intensity ratio (A/B) value between a peak intensity (A) of a “002 plane” detected when the graphitizable carbon material is measured through X-ray diffraction measurement (XRD) and a higher peak intensity (B) that is selected from a “100 plane” and a “004 plane” is at least 2.5 and less than 27. (3) The filler is in powder form and the average particle diameter D50 is at least 1 ?m and at most 5 mm.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: March 14, 2023
    Assignee: Mazda Motor Corporation
    Inventors: Toshiaki Miyanaga, Kazuhisa To, Nobuyoshi Kajioka, Junichi Ogawa, Kenji Hiramoto
  • Patent number: 11591546
    Abstract: The invention discloses synergistic combinations of surfactant blends and cleaning compositions employing the same. In certain embodiments a surfactant system is disclosed which includes an extended anionic surfactant with novel co-surfactants including one or more of an alkyl glycerol ether, an ethoxylated alkyl glycerol ether, an alcohol ethoxylate and/or a gemini surfactant. This system forms emulsions with, and can remove greasy and oily stains, even those comprised of non-trans fats. The compositions may be used alone, as a pre-spotter or other pre-treatment or as a part of a soft surface or hard surface cleaning composition.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: February 28, 2023
    Assignee: Ecolab USA Inc.
    Inventors: Victor Fuk-Pong Man, Derrick Richard Anderson
  • Patent number: 11581538
    Abstract: In one embodiment, a positive electrode active material for a secondary battery, the positive electrode active material being a primary particle having a monolithic structure that includes a lithium composite metal oxide of Formula 1 below, wherein the primary particle has an average particle size (D50) of 2 ?m to 20 ?m and a Brunauer-Emmett-Teller (BET) specific surface area of 0.15 m2/g to 0.5 m2/g, and wherein the positive electrode active material has a rolling density of 3.0 g/cc or higher under a pressure of 2 ton·f: LiaNi1-x-yCoxM1yM3zM2wO2??[Formula 1] in Formula 1, M1 is at least one selected from the group consisting of Al and Mn, M2 is any one or two or more elements selected from the group consisting of Zr, Ti, Mg, Ta, and Nb, M3 is any one or two or more elements selected from the group consisting of W, Mo, and Cr, and 1.0?a?1.5, 0?x?0.5, 0?y?0.5, 0.005?z?0.01, 0?w?0.04, 0<x+y?0.7.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: February 14, 2023
    Inventors: Byung Chun Park, Wang Mo Jung, Seong Hoon Kang, Ju Kyung Shin, Sang Min Park, Sang Wook Lee
  • Patent number: 11565987
    Abstract: A method of making chlorofluorohydrocarbons including, contacting, a fluorinated hydrocarbon reagent in the vapor phase, with hydrogen chloride (HCl). The reaction is conducted in the presence of an effective amount of a catalyst, at an elevated temperature sufficient to effect hydrochlorination to form a reaction mixture including a chlorofluorohydrocarbon.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: January 31, 2023
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventor: Xuehui Sun
  • Patent number: 11565509
    Abstract: A composite material having at least two layers of reinforcing fibers impregnated with a curable resin; an interlaminar region formed between adjacent layers of reinforcing fibers; and a combination of polymeric toughening particles and fire-retardant particles in the interlaminar region.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: January 31, 2023
    Assignee: Cytec Industries Inc.
    Inventors: Fiorenzo Lenzi, Carmelo Luca Restuccia
  • Patent number: 11545278
    Abstract: Provided is a method of forming a conductive polymer composite. The method includes forming a mixture. The mixture includes a first thermoplastic polymer, a second thermoplastic polymer and a plurality of metal particles. The first thermoplastic polymer and the second thermoplastic polymer are immiscible with each other. The plurality of metal particles include at least one metal that is immiscible with both the first thermoplastic polymer and the second thermoplastic polymer. The method includes heating the mixture to a temperature greater than or equal to a melting point of the metal.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: January 3, 2023
    Assignee: XEROX CORPORATION
    Inventors: Rachel Prestayko, Sarah J. Vella, Carolyn Moorlag, Barkev Keoshkerian, Jordan H. Wosnick
  • Patent number: 11525066
    Abstract: A flake-less molecular ink suitable for printing (e.g. screen printing) conductive traces on a substrate has 30-60 wt % of a C8-C12 silver carboxylate and 0.1-10 wt % of a polymeric binder, or 5-75 wt % of bis(2-ethyl-1-hexylamine) copper (II) formate, bis(octylamine) copper (II) formate or tris(octylamine) copper (II) formate and 0.25-10 wt % of a polymeric binder, and balance of at least one organic solvent, wherein the binder has ethyl cellulose, and the ethyl cellulose has an average weight molecular weight in a range of 60,000-95,000 g/mol and a bimodal molecular weight distribution.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: December 13, 2022
    Assignees: National Research Council of Canada, Groupe Graham International Inc.
    Inventors: Arnold J. Kell, Sylvie Lafrenière, Chantal Paquet, Patrick Malenfant, Olga Mozenson