Patents Examined by Tanya T Motsinger
  • Patent number: 11664898
    Abstract: A photonic system enabling the processing of high frequency microwave, mm-wave, THz signals or other RF signals. The processing may include, e.g., adjusting the frequency, quadrature, and/or power of the signals. In illustrative examples, the system uses a polychromatic light source producing at least two low noise optical emission frequencies that can be independently tuned in a broad frequency range and/or modulated in a broad frequency range using external modulators. An RF input signal is upconverted to one of the optical harmonics of the modulated polychromatic source, processed in the optical frequency domain, and downconverted to the RF domain (at the same or a different RF carrier frequency). The photonic system can be integrated on a planar optical substrate, such as a photonic integrated circuit (PIC). Optical local oscillators are also described for use in the photonic system or for other purposes. Various system, device, and method examples are provided.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: May 30, 2023
    Assignee: OEwaves, Inc.
    Inventors: Lute Maleki, Andrey B. Matsko
  • Patent number: 11632185
    Abstract: A receiver convolutes each of a real component and an imaginary component of each polarization of a polarization-multiplexed reception signal with an impulse response for compensating for frequency characteristics of the receiver and a complex impulse response for wavelength dispersion compensation, and generates, as input signals, the convoluted real component and imaginary component of each polarization and phase conjugations thereof, for each polarization.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: April 18, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takayuki Kobayashi, Masanori Nakamura, Fukutaro Hamaoka, Yutaka Miyamoto
  • Patent number: 11621777
    Abstract: A framework for virtual network element of optical access networking has been designed to provide a cloud-residing core system (i.e., Mobile core controller or SDN controller) for running higher layers without requiring dedicated hardware at the edge of the network. In this framework, a service operator can create multiple optical access network connections for serving a single or multiple types of wired or wireless subscriber by programming (via software) optical ports of a Virtual Optical Edge Device to perform the desired MAC and/or PHY layer of a selected optical protocol. The Virtual Optical Edge Device in turn performs the desired PHY function or MAC and PHY function of selected protocol per each southbound port. The Virtual Optical Edge Device performs data abstraction function on all data associated with southbound ports and presents the core network a unified API via its northbound ports.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: April 4, 2023
    Assignee: Sealight Technologies, Inc.
    Inventor: Moshe Frozenfar
  • Patent number: 11611427
    Abstract: An optical link channel auto-negotiation method and apparatus, a non-transitory computer-readable storage medium are disclosed. The optical link channel auto-negotiation method may include at least one of the following: configuring a receiving rate, determining whether a receive clock recovered from received data by a physical layer (PHY) module is locked, and in response to determining that the receive clock recovered from the received data by the PHY module is locked, determining that the receiving rate is configured correctly; configuring a first predetermined parameter in response to determining that the receiving rate is configured correctly, determining whether code block data of the PHY module is in a synchronized state, and in response to determining that the code block data of the PHY module is in a synchronized state, determining that the first predetermined parameter is configured correctly.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: March 21, 2023
    Assignee: ZTE CORPORATION
    Inventors: Guoyang Xu, Huannan Ma, Bo Yang
  • Patent number: 11606139
    Abstract: Aspects of the subject disclosure may include, for example, determining distinct timing offsets between an input port and output ports of a multiport optical device. An optical signal is injected at an input port of the device to obtain output signals at the output ports, which are injected into downstream fibers. An optical multipath return signal is received via the input port of the device, including a combination of measured events including reflections, backscatter, or both. A number of similar events expected in the number of downstream optical fibers is calculated to obtain an expected multipath signature based on configuration data. Results of the optical multipath return signal are then compared to the expected multipath signature to obtain comparison results. One of the measured events is distinguished from the others based on the first comparison results and the distinct timing offsets. Other embodiments are disclosed.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: March 14, 2023
    Assignee: AT&T Intellectual Property I, L.P.
    Inventor: Ricky Perry
  • Patent number: 11595120
    Abstract: A function of detecting an unused path through which actual data is not transmitted in a long-distance redundant network is realized at low cost. In an optical transmission system 20, each of the optical transceivers 21a and 21b that are connected to each other by an optical fiber cable 22 and disposed separately includes a protocol IC unit 35. The protocol IC unit 35 transmits an idle signal A1 with empty data using an optical signal P1 to an unused path of the optical fiber cable 22. At the time of this transmission, the protocol IC unit 35 outputs, to the transmission unit 33, a control signal C1 for performing, at a fixed modulation period, ON/OFF modulation on the optical signal P1 on which the idle signal A1 is superimposed. Also, the protocol IC unit 35 transmits an OAM signal O1 at an OAM period that is a period different from a modulation period, and performs control to turn ON the control signal C1 at the time of this transmission.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: February 28, 2023
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Kana Masumoto, Toshiya Matsuda
  • Patent number: 11595132
    Abstract: An ADC (12) in an optical receiver (1) generates a sample signal composed of time series samples by oversampling a received signal that is an electrical signal converted from an optical signal by a light receiving unit (11). A symbol timing detection unit (132) of a DSP unit (13) detects a symbol timing in the sample signal. When it is determined that a symbol timing is appearing at a longer interval than a predetermined interval based on this detection result, a symbol timing adjusting unit (133) skips one or more samples included in the sample signal to read out samples at the predetermined interval, while when it is determined that the symbol timing is appearing at a shorter interval than the predetermined interval, the symbol timing adjusting unit inserts the same samples as one or more samples included in the sample signal immediately after the one or more samples to read out the samples at the predetermined interval.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: February 28, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Noriko Iiyama, Masamichi Fujiwara, Junichi Kani
  • Patent number: 11575981
    Abstract: The present disclosure intends to provide an optical signal from an ONU according to a desired service usage state without using the ONU and an OLT. A simulated signal light generation apparatus 10 according to the present disclosure is a simulated signal light generation apparatus 10 for simulating an uplink signal light generated in an optical network unit (ONU) in a passive optical network (PON), and the apparatus includes a usage state control unit 11 that sets a service usage state of the ONU, a signal generation unit 12 that generates an uplink signal frame according to the usage state set by the usage state control unit 11, and an electrical/optical conversion unit 13 that converts an electrical signal from the signal generation unit 12 into an optical signal, and the optical signal from the electrical/optical conversion unit 13 is repeatedly transmitted to an optical fiber core 22.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: February 7, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takui Uematsu, Tetsuya Manabe, Hidenobu Hirota, Hiroyuki Iida
  • Patent number: 11556831
    Abstract: A method and a system for generating a hyper-entangled high-dimensional time-bin frequency-bin state, the method comprising generating a hyper-entangled state composed of a time-bin and frequency-bin encoded state, and individually modifying at least one of: i) the amplitude and ii) the phase of the state components at different frequency-bins and different time-bins of the hyper-entangled state. The system comprises a non-linear medium exited with multiple pulses in broad phase-matching conditions, a frequency mode separator and an amplitude/phase modulator, the frequency mode separator temporally and spatially separating frequency modes of the hyper-entangled state, the amplitude/phase modulator individually modifying at least one of: i) the amplitude (and ii) the phase of the state components at different frequency-bins and different time-bins of the hyper-entangled state.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: January 17, 2023
    Inventors: Michael Kues, Christian Reimer, Stefania Sciara, Piotr Roztocki, Luis Romero Cortes, José Azaña, Yoann Jestin, Roberto Morandotti
  • Patent number: 11552714
    Abstract: A signal receiving apparatus includes at least one signal separating apparatus that separates a specific signal from a plurality of received signals. Each of the at least one signal separating apparatus includes a spatial filtering unit that separates at least one equalized signal and a decision signal outputting unit that generates a first decision signal by deciding the equalized signal and outputs the generated first decision signal. The spatial filtering unit separates the at least one equalized signal by multiplying at least the plurality of received signals among the plurality of received signals and either the first decision signal output from the decision signal outputting unit or a second decision signal output from another signal separating apparatus by predetermined weighting coefficients.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: January 10, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Kohki Shibahara, Takayuki Mizuno, Akira Isoda, Yutaka Miyamoto
  • Patent number: 11546064
    Abstract: An optical transmission system including an optical transmission device and an optical reception device that receives, via an optical transmission line, a signal transmitted from the optical transmission device, the optical transmission system including a transmission-mode selection unit that selects transmission mode information in descending order of priority out of transmission mode information, which is combinations of a plurality of parameters concerning transmission performance, the transmission mode information being a plurality of kinds of the transmission mode information common to the transmission performance of the optical transmission device and the optical reception device, a signal transmission unit that transmits, to the optical reception device, a signal modulated based on the selected transmission mode information, and a signal reception unit that receives the signal and modulates the received signal based on the transmission mode information selected by the transmission-mode selection unit.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: January 3, 2023
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Tetsuro Inui, Hideki Nishizawa, Seiji Okamoto, Akira Hirano, Shokei Kobayashi, Fumikazu Inuzuka, Seiki Kuwabara, Takafumi Tanaka, Kei Kitamura, Takuya Oda
  • Patent number: 11539444
    Abstract: The invention provides an optical system and method for outputting a modulated signal comprising a single multimode interference (MMI) device having at least two inputs configured with a fixed phase and an output, wherein the output modulated signal is controlled by modulating the input power of at 5 least one of the inputs. The invention only requires a single MMI device to operate as the relative phase between the two inputs are fixed relative each other and one of the inputs can be used to modulate the output by modulating the power at a single input. In further embodiments, the invention shows how correct phases can be set by a single MMI device. Thus, no more than two 10 MMIs are required in conjunction with phase or amplitude modulating elements to fully generate a BPSK or QPSK signal.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: December 27, 2022
    Assignee: University College Cork—National University Of Ireland, Cork
    Inventors: Frank Peters, Shane Duggan
  • Patent number: 11509353
    Abstract: Communication systems and methods over direct current (DC) power conductors to remote subunits may include interrupt windows in a power signal on a DC power conductor for safety reasons. The timing of rising and falling edges of the interrupt window may be modified, thereby changing the duration, period, or position within a period of the interrupt window. In effect, interrupt windows within the DC power signal may be pulse width modulated to send data between a power source and one or more subunits. Pulse width modulation (PWM) of the DC power signal preserves the safety features, but allows data and/or commands to be transferred between the power source and any subunits.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: November 22, 2022
    Assignee: Corning Research & Development Corporation
    Inventor: Alexey Mestezky
  • Patent number: 11502752
    Abstract: The present disclosure related to a visible light communication apparatus, comprising a substrate; a TFT structure layer on the substrate; a photoelectric conversion component on a source or a drain of the TFT structure layer; and a light-emitting component on the substrate. The photoelectric conversion component may be configured to receive an optical signal and convert the optical signal into an electrical signal; and the light-emitting component may be configured to emit an optical signal.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: November 15, 2022
    Assignee: BEIJING BOE TECHNOLOGY DEVELOPMENT CO., LTD.
    Inventor: Dapeng Xue
  • Patent number: 11489711
    Abstract: Methods and apparatuses are provided to modify existing overlay system architectures in a cost effective manner to meet the growing demand for narrowcast services and to position the existing overlay systems for additional future modifications. The implementations of the improved overlay system of this disclosure re-digitize narrowcast analog signals after they have been QAM modulated and upconverted to RF frequencies and replace the analog narrowcast transmitters with digital narrowcast transmitters. In the fiber nodes, the received narrowcast signals are converted back to analog signals and combined with analog broadcast signals for transmission to the service groups.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: November 1, 2022
    Assignee: ARRIS Enterprises LLC
    Inventors: Zoran Maricevic, Marcel F. Schemmann, Dean Painchaud, William P. Dawson, Zhijian Sun
  • Patent number: 11431417
    Abstract: An optical receiver includes a photonic integrator configured to accumulate optical signal energy corresponding to the input optical signal during an integration period, and to produce an output optical signal at an end of the integration period, the output optical signal having a higher intensity than the input optical signal, a shutter operable between a closed position and an open position, the shutter configured to prevent the output optical signal from exiting the photonic integrator when in the closed position and to allow the output optical signal to exit the photonic integrator when in the open position, a synchronizer coupled to the shutter and configured to control the shutter between the open position and the closed position; and a photodetector configured to receive the output optical signal when the shutter is in the open position and to produce an electrical signal corresponding to the output optical signal.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: August 30, 2022
    Assignee: RAYTHEON COMPANY
    Inventors: Gary M. Graceffo, Andrew Kowalevicz, Benjamin P. Dolgin
  • Patent number: 11387912
    Abstract: A wavelength converter that converts signal light and pump light into a light containing a new wavelength component using a nonlinear optical fiber, has a PBS for splitting incident light into a first polarized wave and a second polarized wave, a first polarization controller provided between the PBS and a first end of the nonlinear optical fiber, and a second polarization controller provided between the PBS and a second end of the nonlinear optical fiber, wherein in an optical loop connecting the PBS, the first polarization controller, the nonlinear optical fiber and the second polarization controller, the first polarized wave and a first component of the pump light travel through the nonlinear optical fiber in a first direction, and the second polarized wave and a second component of the pump light travel through the nonlinear optical fiber in a second direction opposite to the first direction.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: July 12, 2022
    Assignee: FUJITSU LIMITED
    Inventors: Goji Nakagawa, Tomoyuki Kato
  • Patent number: 11387909
    Abstract: The present invention provides a configuration of a novel optical transmitter which outputs stable PDM signals. The novel optical transmitter generates phase conjugate light using a single second-order non-linear optical element included in a phase conjugate light generator with a looped configuration. A relative phase of main signal light with respect to excitation light and phase conjugate light of the main signal light stabilizes between two polarized components, and a PDM signal including a pair of a polarization-multiplexed signal and phase conjugate light in a stable phase state can be generated and transmitted. The present invention can provide an optical transmitter that generates a PDM signal in which a variation in a phase between quadrature polarized waves is suppressed. By stabilizing quality of a PDM transmission signal on a side of the optical transmitter, a phase sensitive amplifier in a polarization diversity configuration can be operated in a stable manner.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: July 12, 2022
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takushi Kazama, Takeshi Umeki, Takahiro Kashiwazaki, Koji Embutsu, Osamu Tadanaga, Ryoichi Kasahara
  • Patent number: 11374676
    Abstract: An optical device (100) for an optical network, comprising an optical input (110), a passive optical component (112), a memory device (114) for storing information relating to the passive optical component. The optical device further comprises an optical splitter (116) configured to power split off a portion of received optical signals to form split optical signals and to output the remaining optical power of received optical signals to the passive optical component and a photodetector (118) configured to receive the split optical signals and to generate a corresponding photodetector output signal.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: June 28, 2022
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Roberto Magri, Paolo Debenedetti, Riccardo Ceccatelli
  • Patent number: 11356181
    Abstract: An optical transport system configured to compensate nonlinear signal distortions using a backward-propagation algorithm in which some effects of polarization mode dispersion on the nonlinear signal distortions are accounted for by employing two or more different approximations of said effects within the bandwidth of the optical communication signal. In an example embodiment, the corresponding digital signal processor (DSP) is configured to switch between different approximations based on a comparison, with a fixed threshold value, of a difference between frequencies of various optical waves contributing to the nonlinear signal distortions, e.g., through four-wave-mixing processes. In different embodiments, the backward-propagation algorithm can be executed by the transmitter's DSP or the receiver's DSP.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: June 7, 2022
    Assignee: NOKIA OF AMERICA CORPORATION
    Inventors: Ronen Dar, Cristian B. Czegledi