Patents Examined by Teresa E Knight
  • Patent number: 11150245
    Abstract: Circulating tumor cells (CTCs) are associated with metastasis of malignant solid tumors in a patient. Presented here is evidence that CTCs exhibit cell cycle phase variability and that there is a strong correlation between the number of CTCs in a mitotic cell cycle phase and the prospects for long term survival of the subject from which the cells were obtained. Also presented herein are methods of determining the mitotic cell cycle phase of CTCs from a patient having cancer and using the information in grading malignant solid tumors and predicting the likelihood of survival of the patient.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: October 19, 2021
    Assignee: Creatv Microtech, Inc.
    Inventors: Daniel Adams, Cha-Mei Tang
  • Patent number: 11149240
    Abstract: The present invention relates to a rotary rod for 3D bio-printing, in which the rotary rod is arranged horizontally and is driven to rotate, the rotary rod has a hollow structure and provided with at least one hole in a surface thereof, such that during a 3D bio-printing process, a nutrition solution passes through the hollow structure and a portion of the nutrition solution exudes via at least one hole. The present invention further provides a 3D bio-printing platform for supplying nutrition, comprising the rotary rod and a nutrition supply system, and a method of printing a tubular tissue using the bio-printing platform. The present invention, which reduces the possibility of resulting in tissue collapse from the effect of gravity, provides a new method of 3D bio-printing a tubular tissue and supplying nutrition in a printing process, with a wide application prospect.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: October 19, 2021
    Assignee: REVOTEK CO., LTD
    Inventors: Yujian James Kang, Huixing Zhou
  • Patent number: 11142747
    Abstract: Stromal stem cells are prospectively isolated from human bone marrow then expanded into clonal populations and cultured and used, the isolation being on the basis of expression of a cell surface marker, wherein the cell surface marker binds an antibody and wherein said antibody cross reacts with a cell surface marker found on mouse stromal stem cells or rat stromal stem cells, and optionally also on a cell of at least one other mammalian species selected from mouse, rat, horse, rabbit and pig cells. Useful stromal stem cell populations are positive for SDC2.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: October 12, 2021
    Assignee: Orbsen Therapeutics Limited
    Inventor: Stephen J. Elliman
  • Patent number: 11142746
    Abstract: Described herein is a novel, highly efficient system to remove erythrocytes and purify leukocytes would raise the quality of UCB and other transplant grafts, thereby significantly improving patient outcomes.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: October 12, 2021
    Assignees: University of Maryland, Baltimore, The Trustees of Princeton University
    Inventors: Curt I. Civin, James C. Sturm, Robert H. Austin
  • Patent number: 11124769
    Abstract: This disclosure provides methods of making a megakaryocyte-erythroid progenitor cell (MEP), comprising differentiating a MEP precursor cell into a MEP in culture in the presence of an aryl hydrocarbon receptor (AhR) modulator. In some embodiments the AhR modulator is an AhR antagonist. In some embodiments the AhR modulator is an AhR agonist. In some embodiments the methods comprise culturing MEP precursor cells in the presence of an AHR antagonist and then culturing MEP precursor cells in the presence of an AHR agonist. In some embodiments the stem cell is a pluripotent stem cell. In some embodiments the MEP co-expresses CD41 and CD235. In some embodiments the number of MEPs produced in the culture increases exponentially. Methods of making a red blood cell (RBC) by culturing a MEP in the presence of an AhR modulator are also provided. Methods of making a megakaryocyte and/or a platelet, comprising culturing a MEP in the presence of an AhR modulator are also provided.
    Type: Grant
    Filed: February 17, 2018
    Date of Patent: September 21, 2021
    Assignees: BOSTON MEDICAL CENTER CORPORATION, TRUSTEES OF BOSTON UNIVERSITY
    Inventors: George J. Murphy, David H. Sherr, Sarah S. Rozelle, Brenden W. Smith
  • Patent number: 11111479
    Abstract: The present disclosure provides methods, and related kits, for directing cell attachment and spreading on a substrate and inducing isotropic spreading of cells; provides methods, and related kits, for cell sorting; and further provides methods, and related kits, for guided induction of stem cell differentiation.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: September 7, 2021
    Inventor: Shengyuan Yang
  • Patent number: 11110148
    Abstract: The present invention provides processes for producing porous silk fibroin scaffold material. The porous silk fibroin scaffold can be used for tissue engineering. The porosity of the silk fibroin scaffolds described herein can be adjusted as to mimic the gradient of densities found in natural tissue. Accordingly, methods for engineering of 3-dimensional tissue, e.g. bone and cartilage, using the silk fibroin scaffold material are also provided.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: September 7, 2021
    Assignees: Trustees of Tufts College, Massachusetts Institute of Technology
    Inventors: David L. Kaplan, Rina Sears, Gordana Vunjak-Novakovic, Lorenz Meinel
  • Patent number: 11097140
    Abstract: Methods to remediate a contaminated material are provided. In one embodiment, a biocatalyst that digests hydrocarbon contaminants is activated with a nutrient and the activated biocatalyst is combined with the contaminated material and water to form a mixture. The mixture is incubated for a period of time, and the level of contaminant in the mixture is determined to ascertain whether to incubate further, add additional biocatalyst mix, or provide the remediated material for further processing. In one embodiment, the remediated material is provided for reuse or recycling with a second material, such as a construction aggregate. The method is particularly suited for remediation of drill cuttings, mine tailings, hydrocarbon-contaminated soil, and the like.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: August 24, 2021
    Assignee: BOLDWATER USA, LP
    Inventor: Mark Knippa
  • Patent number: 11083758
    Abstract: A method for treating cartilage defects including providing a placental membrane preparation that includes ground or minced placental membranes and optionally, a ground or minced cartilage and/or biocompatible glue, and introducing the preparation to a cartilage defect within a skeletal joint. The cartilage defect may include a hyaline cartilage defect, such as a chondral defect, or meniscal defect. The treatment may be provided in combination with other treatments such as marrow stimulation treatments and surgical repair treatments using sutures or other fixation techniques. The preparation promotes the regeneration of cartilage within the skeletal joint.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: August 10, 2021
    Assignee: Prime Merger Sub, LLC
    Inventors: Stephen Lucey, Samuel K. Tabet, Jack Farr, II, John J. Anderson, Katie C. Mowry, Gregory J. Yager, Howard P. Walthall, Jr.
  • Patent number: 11085023
    Abstract: Provided is a method for producing an economical bovine serum composition containing many factors useful for cell proliferation. The method includes a step of performing an anticoagulation treatment of bovine whole blood with an anticoagulant, a step of obtaining a buffy coat and a fraction with a heavier specific gravity than that of the buffy coat from the anticoagulated whole blood, and a step of promoting and activating an interaction between the obtained leukocytes and platelets at a given temperature for not less than a given time to cause secretion or release of a humoral factor from the leukocytes and/or platelets and performing a recoagulation treatment of blood components including the humoral factor with a re-coagulating agent.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: August 10, 2021
    Inventor: Kenichi Yamahara
  • Patent number: 11077145
    Abstract: The present invention relates to the method for mass production of mesenchymal stem cell-derived proteins including various growth factors and cytokines, a mesenchymal stem cell conditioned medium containing a large amount of protein and produced by the above production method, cosmetic composition and pharmaceutical composition including the above conditioned medium for skin regeneration, anti-wrinkle, alopecia treatment, prevention of hair loss and promotion of hair growth.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: August 3, 2021
    Assignee: STEMMEDICARE CO., LTD.
    Inventor: Jang Ho Lee
  • Patent number: 11077138
    Abstract: The disclosure provides local delivery of a trace element to a site of tissue injury, which triggers the body' inherent tissue repair mechanism. Local delivery of copper to the site of injury induces migration (i.e., homing) of stem cells to the site of injury, triggers differentiation of stem cells at the site of injury, induces tissue regeneration at the site of injury, induces signaling molecules that trigger tissue regeneration, reverses damage at the site of injury, and/or reconstructs the microenvironment of neurofibril cells and neurosecretory cells at the site of injury. In another aspect, delivering a trace element (for example, copper) directly to the site of injury and associated methods are disclosed.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: August 3, 2021
    Assignee: INNOLIFE CO., LTD.
    Inventor: Yujian James Kang
  • Patent number: 11066660
    Abstract: The present invention provides a technique for efficiently aggregating a polymer such as ECM together with cells. A method for preparing a polymer-loaded cell or cell aggregate, comprising adding a solution containing a polymer and at least one cell to a medium containing a swellable material to thereby aggregate the polymer together with the cell. A method for controlling the property and/or the function of a cell or a cell aggregate, comprising culturing the polymer-loaded cell or cell aggregate prepared by the above-described method. A method for culturing a cell or a cell aggregate, comprising: preparing a polymer capsule filled with a cell or a cell aggregate by adding a solution containing a polymer and at least one cell to a medium containing a swellable material to thereby aggregate the polymer together with the cell; and culturing the cell or cell aggregate within the capsule. For constructing 3D cell tissues, a method using U-bottom 96-well plates or the hanging-drop method is conventionally used.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: July 20, 2021
    Assignee: PUBLIC UNIVERSITY CORPORATION YOKOHAMA CITY UNIVERSITY
    Inventor: Nobuhiko Kojima
  • Patent number: 11066635
    Abstract: A method of culturing cells including: dividing a culture area into a center area and a plurality of peripheral areas, and designating the center area and the plurality of peripheral areas as measurement positions; calculating: a confluent rate at each of the measurement positions designated; and an average confluent rate which is an average of sum of the confluent rates at the measurement positions designated, the confluent rate being defined as a proportion of an area occupied by cells in a designated area; and determining a timing to perform a subculture of the cells, based on the confluent rate, wherein the determining of the timing further includes determining when the average confluent rate is smaller than a first threshold value, the confluent rate of the center area is larger than a second threshold value, and the second threshold value is larger than the first threshold value.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: July 20, 2021
    Assignee: Panasonic Corporation
    Inventors: Takeshi Ando, Toshiaki Yamauchi, Norihiro Shibata
  • Patent number: 11066633
    Abstract: The presently disclosed subject matter provides systems and methods for producing a three-dimensional model of a human cervix. A microdevice is provided for culturing human cervical cells. The microdevice can include an upper microchannel including live ectocervical epithelial cells. The microdevice can include a lower microchannel including a first parallel lane and a second parallel lane including stromal media. The first and the second parallel lanes can be lined with live vascular endothelial cells. The lower microchannel can include a third parallel lane including uterine fibroblasts and live smooth muscle cells embedded in hydrogel. The first, second, and third lanes of the lower microchannel can be separated by protrusion structures. The third parallel lane can be positioned in the lower microchannel in between the first and the second parallel lanes. The microdevice can further include a porous membrane positioned in between the upper microchannel and the lower microchannel.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: July 20, 2021
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Dongeun Huh, Jeongyun Seo
  • Patent number: 11040089
    Abstract: The present invention concerns new compositions containing hyaluronic acid or the derivatives thereof in association with the proteolytic enzyme collagenase (and relative pharmaceutical formulations) for the preparation of a dressing for topical treatment of various kinds of wounds, burns of varying depth, pressure sores, vascular ulcers and diabetic foot ulcers as well as for the treatment of hypertrophic and keloid scars.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: June 22, 2021
    Assignee: FIDIA FARMACEUTICI S.P.A
    Inventors: Susanna Vaccaro, Giovanni Gennari, Lanfranco Callegaro, Antonio Giannelli, Salvatore Caruso
  • Patent number: 11021686
    Abstract: This invention relates to the efficient generation of cholangiocyte progenitor (CP) cells. Foregut stem cells (FSCs) are cultured in a hepatic induction medium comprising bone morphogenetic protein (BMP) and a TGF? signalling inhibitor to produce a population of hepatoblasts. The hepatoblasts are then cultured in a biliary induction medium comprising fibroblast growth factor (FGF), retinoic acid and a TGF? ligand to produce a population of cholangiocyte progenitors (CPs). The cholangiocyte progenitors (CPs) may be matured into cholangiocyte-like cells (CLCs) that display functional properties of Common Bile Duct (CBD) cholangiocytes. Methods, kits, cell populations and uses of these cell populations are provided.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: June 1, 2021
    Assignee: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Ludovic Vallier, Fotios Sampaziotis, Nicholas Hannan
  • Patent number: 11021698
    Abstract: Disclosed is a method for subjecting adherent cells to at least one electric field, in which the electric field is generated by applying a voltage to at least two active electrodes 63, wherein at least three electrodes 63, 64 are provided, and wherein at least two electrodes 63, 64 are active electrodes 63 when the voltage is applied in order to generate a first electric field, and in which at least one second electric field is generated, wherein at least one of the two previously active electrodes 63 is a potential-free electrode 64 when the voltage is applied. Also disclosed is a device 58 comprising at least three electrodes 63, 64, which are connected to at least one voltage source by means of at least one switching device 59, 60, 61, 62, wherein at least five electrodes 63, 64 are connected to the at least one voltage source by means of four switching devices 59, 60, 61, 62, wherein at least two electrodes 63, 64 are connected to the voltage source by means of a common switching device 59, 60, 61, 62.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: June 1, 2021
    Assignee: LONZA COLOGNE GMBH
    Inventors: Thomas Koblizek, Andreas Heinze, Timo Gleissner, Herbert Mueller-Hartmann, Andreas Wirth
  • Patent number: 11008547
    Abstract: Embodiments described herein generally relate to passively replacing media in a closed cell expansion system to reduce or prevent the dilution of chemical signaling used to inhibit signaling pathways that keep a cell population in the lag phase of cell growth. To prevent such dilution, active inlet fluid flow to the system may be halted. To replace fluid lost by the system, a bag containing media may be attached to the waste line in replacement of the waste or outlet bag connected thereto. By turning off one or more pumps, media from the replacement bag is added to the system at the rate of evaporation. Chemical signaling dilution may be prevented while conserving system resources. Enhancement of chemical signaling to reduce the lag phase of cell growth may further be accomplished by adding molecules, such as chemical-signaling proteins, from a direct source to the system.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: May 18, 2021
    Assignee: Terumo BCT, Inc.
    Inventor: Brian J. Nankervis
  • Patent number: 11002727
    Abstract: A process of simply, cheaply, and reproducibly creating complex tissue models using screen printing and the tissue model prepared using the screen printing process. These models are amenable to high throughput screening. They will allow the study of components of disease progression and can be used for screening therapies.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: May 11, 2021
    Assignees: UNIVERSITY OF MARYLAND, BALTIMORE COUNTY, UNIVERSITY OF MARYLAND, BALTIMORE
    Inventors: Erin Lavik, Steve Bernstein, Adam Day, Bryan Ibarra