Patents Examined by Teresa E Strzelecka
  • Patent number: 11149302
    Abstract: The present invention relates to an in vitro cell-free process for production of deoxyribonucleotides (DNAs) comprising at least one hairpin, corresponding DNA products and uses thereof, and oligonucleotides and kits useful in the process of the invention.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: October 19, 2021
    Assignee: Touchlight IP Limited
    Inventors: Paul Rothwell, Neil Porter, Lydia Viney, Thomas Adie
  • Patent number: 11142759
    Abstract: The invention provides methods for controlling the density of different molecular species on the surface of a solid support. A first mixture of different molecular species is attached to a solid support under conditions to attach each species at a desired density, thereby producing a derivatized support having attached capture molecules. The derivatized support is treated with a second mixture of different molecular species, wherein different molecular species in the second mixture bind specifically to the different capture molecules attached to the solid support. One or more of the capture molecules can be reversibly modified such that the capture molecules have a different activity before and after the second mixture of molecular species are attached. In particular embodiments, the different molecular species are nucleic acids that are reversibly modified to have different activity in an amplification reaction.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: October 12, 2021
    Assignee: Illumina, Inc.
    Inventors: Andrea Sabot, Roberto Rigatti, Min-Jui Richard Shen
  • Patent number: 11142791
    Abstract: The methods and systems described herein provide an improved emulsion droplet based nucleic acid amplification method, which allows nucleic acids contained in biological systems to be detected, quantitated and/or sorted based on their sequence as detected with nucleic acid amplification techniques, e.g., polymerase chain reaction (PCR). The nucleic acids can be free floating or contained within living or nonliving structures, including particles, viruses, and cells. The nucleic acids can include, e.g., DNA or RNA.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: October 12, 2021
    Assignee: The Regents of the University of California
    Inventors: Adam R. Abate, David Sukovich
  • Patent number: 11136616
    Abstract: Disclosed are compositions and methods for the preparation of RNA libraries for sequencing, gene expression profiling, microarray and other uses and for simplification of the library preparation process. The disclosure provides blocking oligonucleotides which bind to byproduct nucleic acid molecules formed during the ligation of adapters to nucleic acid segments prior to sequencing and inhibit or block amplification of the byproduct nucleic acid molecules in subsequent amplification reactions. Methods for library preparation using blocking oligonucleotides are also provided.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: October 5, 2021
    Assignee: Life Technologies Corporation
    Inventors: Jian Gu, Kelli Bramlett, Christopher Burnett
  • Patent number: 11124842
    Abstract: In some embodiments, the disclosure relates generally to methods, as well as related systems, compositions, kits, apparatuses and computer-readable media, comprising a multiplex molecular tagging procedure that employs a plurality of tags that are appended to a plurality of polynucleotides. The tags have characteristics, including a sequence, length and/or detectable moiety, or any other characteristic, that uniquely identifies the polynucleotide molecule to which it is appended, and permits tracking individual tagged molecules in a mixture of tagged molecules. For example, the tag having a unique tag sequence, can uniquely identify an individual polynucleotide to which it is appended, and distinguish the individual polynucleotide from other tagged polynucleotides in a mixture. In some embodiments, the multiplex molecular tagging procedure can be used for generating error-corrected sequencing data and for detecting a target polynucleotide which is present at low abundance in a nucleic acid sample.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: September 21, 2021
    Assignee: Life Technologies Corporation
    Inventors: Kelli Bramlett, Dumitru Brinza, Richard Chien, Dalia Dhingra, Jian Gu, Ann Mongan
  • Patent number: 11118232
    Abstract: Described herein are methods for diagnosing melanoma or basal cell carcinoma based on mutations in the DDR2 gene. Further, a distinct subgroup of BRAF-mutated melanomas have somatic mutations in the DDR2 gene as well. Applications of this finding to routine diagnostics include the molecular stratification of melanoma, and the tissue identification of targetable DDR2 kinase mutations in routine formalin-fixed paraffin-embedded sections. Described herein are methods, compositions and kits related to the discovery that DDR2 mutations may be markers for melanoma generally, and BRAF-mediated melanoma in particular, opening up the possibility of dual therapy for melanoma by targeting both DDR2 and BRAF.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: September 14, 2021
    Assignee: Quest Diagnostics Investments LLC
    Inventors: Daniel M. Jones, Yongbao Wang, Shere Billouin-Frazier, Justin Windham
  • Patent number: 11118235
    Abstract: Embodiments of the invention provide a method of detecting one or more strains of Klebsiella pneumoniae. The method may include forming a plurality of mixtures for nucleic amplification. The method can include amplification of specific sequences within the K. pneumonia genome that can provide definitive information to distinguish between one or more types or strains of K. pneumonia.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: September 14, 2021
    Assignees: The Translational Genomics Research Institute, Arizona Board of Regents on Behalf of Northern Arizona University
    Inventors: Jolene Bowers, Elizabeth Driebe, David Engelthaler, Paul Keim
  • Patent number: 11118237
    Abstract: Disclosed are nucleic acid oligomers for amplifying one or more selected regions of HCV nucleic acid. Also disclosed are methods for specific amplification and characterization of HCV nucleic acid using the disclosed oligomers, as well as corresponding reaction mixtures and kits.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: September 14, 2021
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Reinhold B. Pollner, Shyun-Shyun Lee
  • Patent number: 11117113
    Abstract: The present disclosure provides a “looping amplification” method to increase the specificity of nucleic acid amplification. This increased specificity facilitates multiplexing to a much higher degree than was previously possible.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: September 14, 2021
    Assignee: FLUIDIGM CORPORATION
    Inventor: Peilin Chen
  • Patent number: 11111515
    Abstract: This invention discloses multi-part primers for primer-dependent nucleic acid amplification methods. Also disclosed are primer-dependent nucleic acid amplification reactions, particularly DNA amplification reactions, reaction mixtures and reagent kits for such reactions. This invention relates to primer-dependent nucleic acid amplification reactions, particularly DNA amplification relations such as PCR, and primers, reaction mixtures and reagent kits for such reactions and assays employing same.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: September 7, 2021
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Salvatore A. Marras, Diana Vargas-Gold, Sanjay Tyagi, Fred R. Kramer
  • Patent number: 11104948
    Abstract: The present invention relates to controls for NGS methods. The present application discloses plasmids, kits, their uses and methods involving the controls according to the present invention.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: August 31, 2021
    Assignee: VELA OPERATIONS SINGAPORE PTE. LTD.
    Inventor: Mengchu Wu
  • Patent number: 11104963
    Abstract: The disclosed invention is related to methods, compositions and kits for targeting nucleic acid derived from Shiga toxin-producing bacteria such as E. coli. Compositions include amplification oligomers and/or detection probe oligomers. Kits and methods comprise at least one pair of amplification oligomers.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: August 31, 2021
    Assignee: Gen-Probe Prodesse, Inc.
    Inventor: Ejan Tyler
  • Patent number: 11098357
    Abstract: The present invention provides methods, compositions and kits for detecting duplicate sequencing reads. In some embodiments, the duplicate sequencing reads are removed.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: August 24, 2021
    Assignee: TECAN GENOMICS, INC.
    Inventors: Douglas A. Amorese, Jonathan Scolnick, Ben Schroeder
  • Patent number: 11098349
    Abstract: Embodiments of the invention include methods of identifying microorganisms and/or diagnosing infections in subjects cause by microorganisms. Embodiments of the invention may also include further characterizing (e.g., determining the presence of one or more antibiotic resistance markers) the microorganisms and determining a strain identity of the microorganisms.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: August 24, 2021
    Assignees: The Translational Genomics Research Institute, Arizona Board of Regents on behalf of Northern Arizona University
    Inventors: Elizabeth Driebe, Jolene Bowers, David Engelthaler, Paul Keim
  • Patent number: 11098375
    Abstract: The disclosed invention is related to methods, compositions and kits for targeting nucleic acid derived from Shiga toxin-producing bacteria such as E. coli. Compositions include amplification oligomers and/or detection probe oligomers. Kits and methods comprise at least one pair of amplification oligomers.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: August 24, 2021
    Assignee: Gen-Probe Prodesse, Inc.
    Inventor: Ejan Tyler
  • Patent number: 11098319
    Abstract: Methods and compositions are described for producing a glucanase in transgenic plants and then incorporating parts of the transgenic plants in animal feed. The feed glucanase enzyme displays activity across a broad pH range, and tolerance to temperatures that are often encountered during the process of preparing animal feeds. Producing the enzyme in the transgenic plant enhances the thermal stability of the enzyme.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: August 24, 2021
    Assignee: AGRIVIDA, INC.
    Inventors: R. Michael Raab, Oleg Bougri, Xuemei Li
  • Patent number: 11091811
    Abstract: In some embodiments, the disclosure relates generally to methods, as well as related systems, compositions, kits, apparatuses and computer-readable media, comprising a multiplex molecular tagging procedure that employs a plurality of tags that are appended to a plurality of polynucleotides. The tags have characteristics, including a sequence, length and/or detectable moiety, or any other characteristic, that uniquely identifies the polynucleotide molecule to which it is appended, and permits tracking individual tagged molecules in a mixture of tagged molecules. For example, the tag having a unique tag sequence, can uniquely identify an individual polynucleotide to which it is appended, and distinguish the individual polynucleotide from other tagged polynucleotides in a mixture. In some embodiments, the multiplex molecular tagging procedure can be used for generating error-corrected sequencing data and for detecting a target polynucleotide which is present at low abundance in a nucleic acid sample.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: August 17, 2021
    Assignee: Life Technologies Corporation
    Inventors: Kelli Bramlett, Dumitru Brinza, Richard Chien, Dalia Dhingra, Jian Gu, Ann Mongan
  • Patent number: 11085085
    Abstract: The invention provides methods, systems, and computer readable medium for detecting ploidy of chromosome segments or entire chromosomes, for detecting single nucleotide variants and for detecting both ploidy of chromosome segments and single nucleotide variants. In some aspects, the invention provides methods, systems, and computer readable medium for detecting cancer or a chromosomal abnormality in a gestating fetus.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: August 10, 2021
    Assignee: Natera, Inc.
    Inventors: Joshua Babiarz, Tudor Pompiliu Constantin, Lane A. Eubank, George Gemelos, Matthew Micah Hill, Huseyin Eser Kirkizlar, Matthew Rabinowitz, Onur Sakarya, Styrmir Sigurjonsson, Bernhard Zimmermann
  • Patent number: 11085087
    Abstract: The invention provides methods, systems, and computer readable medium for detecting ploidy of chromosome segments or entire chromosomes, for detecting single nucleotide variants and for detecting both ploidy of chromosome segments and single nucleotide variants. In some aspects, the invention provides methods, systems, and computer readable medium for detecting cancer or a chromosomal abnormality in a gestating fetus.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: August 10, 2021
    Assignee: Natera, Inc.
    Inventors: Joshua Babiarz, Tudor Pompiliu Constantin, Lane A. Eubank, George Gemelos, Matthew Micah Hill, Huseyin Eser Kirkizlar, Matthew Rabinowitz, Onur Sakarya, Styrmir Sigurjonsson, Bernhard Zimmermann
  • Patent number: 11078526
    Abstract: The invention relates to methods, compositions, devices, systems and kits as described including, without limitation, reagents and mixtures for determining the identity of nucleic acids in nucleotide sequences using, for example, sequencing by synthesis methods. In particular, the present invention contemplates the use of polyphenolic compounds, known as antioxidant additives, to improve the efficiency of Sequencing-By-Synthesis reactions. For example, gallic acid (GA) is shown herein to be one of many exemplary SBS polyphenolic additives.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: August 3, 2021
    Assignee: IsoPlexis Corporation
    Inventors: Jerzy Olejnik, Michel Georges Perbost