Patents Examined by Teresa E Strzelecka
  • Patent number: 11447827
    Abstract: The invention provides methods, systems, and computer readable medium for detecting ploidy of chromosome segments or entire chromosomes, for detecting single nucleotide variants and for detecting both ploidy of chromosome segments and single nucleotide variants. In some aspects, the invention provides methods, systems, and computer readable medium for detecting cancer or a chromosomal abnormality in a gestating fetus.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: September 20, 2022
    Assignee: Natera, Inc.
    Inventors: Joshua Babiarz, Tudor Pompiliu Constantin, Lane A. Eubank, George Gemelos, Matthew Micah Hill, Huseyin Eser Kirkizlar, Matthew Rabinowitz, Onur Sakarya, Styrmir Sigurjonsson, Bernhard Zimmermann
  • Patent number: 11441174
    Abstract: This disclosure provides methods and kits useful in analysis of mixed nucleic acid populations, including for multiplex genotyping of a mixed nucleic acid sample and for detecting differences in copy number of a target polynucleotide and/or a target chromosome (e.g., microdeletions, duplications and aneuploidies). The disclosure also provides methods and systems useful in the diagnosis of genetic abnormalities in a mixed nucleic acid population taken non-invasively from an organism, such as a sample of blood, plasma, serum, urine stool or saliva. The disclosed methods and systems find use in multiple applications, including prenatal testing and cancer diagnostics. The method is based on the hybridisation of amplified fragments obtained from the sample, e.g. using molecular inversion probes (MIP) to an oligonucleotide array and the detection of the alleles based on different signals from the different alleles of the SNP.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: September 13, 2022
    Inventors: Michael Shapero, Ronald Sapolsky, Eric Fung, Jeanette Schmidt, Monica Chadha, Anju Shukla
  • Patent number: 11441169
    Abstract: Methods and kits for sequencing and quantification of small RNA molecules from small quantities of starting materials, including single cells, are disclosed. The invention can be applied to, among others, preparing small RNA libraries, synthesizing cDNA from small RNAs, characterizing small RNAs from various cell types, studying cellular heterogeneity in pathological conditions, and diagnosing diseases.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: September 13, 2022
    Assignee: Ludwig Institute for Cancer Research Ltd
    Inventors: Omid R. Faridani, Rickard Sandberg
  • Patent number: 11434519
    Abstract: A direct chemical lysis composition includes an assay compatible buffer composition and an assay compatible surfactant. When combined with a specimen storage composition, such compositions prevent undesired modifications to nucleic acid and proteins lysed from cells in the biological sample. Assays of samples from such compositions do not require expensive and time-consuming steps such as centrifugation and prolonged high temperature processing. The direct chemical lysis composition of the present invention permits direct nucleic acid extraction from the cells in the biological sample without the need to decant off the transport media or otherwise exchange the transport media with assay compatible buffers. There is no need to combine the sample with proteinase K or another enzyme to extract nucleic acids from the cells. A method for lysing cells to obtain target nucleic acid for assay and a kit for combining the direct chemical lysis composition with a sample are also contemplated.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: September 6, 2022
    Assignee: Becton, Dickinson and Company
    Inventors: Feng Yang, Sha-Sha Wang, Laurence Michael Vaughan, Michael Porter, Elaine Rose
  • Patent number: 11421268
    Abstract: Methods, compositions, reaction mixtures, kits, and/or systems for producing a complementary sequence to a region in a target polynucleotide in a sample are provided. In some aspects, the methods, compositions, reaction mixtures, kits, and/or systems comprise subjecting the sample to a nucleic acid amplification reaction in a reaction mixture under conditions to yield the complete sequence to the region of the target polynucleotide. In some aspects, the complementary sequence produced is amplified.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: August 23, 2022
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Mikael Kubista, Robert Sjöback
  • Patent number: 11421262
    Abstract: A method for identifying a nucleotide in a primed template nucleic acid, including the steps of (a) providing a vessel having a primed template nucleic acid, polymerase and a nucleotide cognate of a first base type; (b) examining the vessel for a stabilized ternary complex including the polymerase and the nucleotide cognate of the first base type bound at a base position of the primed template nucleic acid; (c) delivering a nucleotide cognate of a second base type to the vessel, whereby the vessel retains the primed template nucleic acid and the polymerase from step (b); (d) examining the vessel for a stabilized ternary complex including the polymerase and the nucleotide cognate of the second base type bound at the base position of the primed template nucleic acid; and (e) identifying the type of nucleotide at the base position of the primed template nucleic acid.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: August 23, 2022
    Assignee: PACIFIC BIOSCIENCES OF CALIFORNIA, INC.
    Inventors: Brittany A. Rohrman, Denis Malyshev, Morassa Mohseni Middleton, Arnold Oliphant
  • Patent number: 11421283
    Abstract: Provided herein are methods for the diagnosis, or management of liver diseases, e.g., hepatocellular carcinoma, using profiles of the miRNAs determined from cellular or acellular body fluids.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: August 23, 2022
    Assignee: Quest Diagnostics Investments LLC
    Inventors: Kevin Qu, Ke Zhang, Maher Albitar
  • Patent number: 11414709
    Abstract: The invention provides methods, systems, and computer readable medium for detecting ploidy of chromosome segments or entire chromosomes, for detecting single nucleotide variants and for detecting both ploidy of chromosome segments and single nucleotide variants. In some aspects, the invention provides methods, systems, and computer readable medium for detecting cancer or a chromosomal abnormality in a gestating fetus.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: August 16, 2022
    Assignee: Natera, Inc.
    Inventors: Joshua Babiarz, Tudor Pompiliu Constantin, Lane A. Eubank, George Gemelos, Matthew Micah Hill, Huseyin Eser Kirkizlar, Matthew Rabinowitz, Onur Sakarya, Styrmir Sigurjonsson, Bernhard Zimmermann
  • Patent number: 11414680
    Abstract: A method is provided for integrating a DNA fragment of a desired base sequence into a site located adjacent to a binding region of a DNA-binding protein bound to a DNA molecule, the method including bringing the DNA fragment having a base sequence including a transposase-binding sequence and the desired base sequence close to the binding region using a specific binding substance to the DNA-binding protein, binding transposase to the transposase-binding sequence, and activating the transposase such that the DNA fragment of the desired base sequence is integrated into the site located adjacent to the binding region.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: August 16, 2022
    Assignee: KYUSHU UNIVERSITY NATIONAL UNIVERSITY CORPORATION
    Inventors: Yasuyuki Ohkawa, Akihito Harada, Hitoshi Kurumizaka, Hiroshi Kimura, Tetsuya Handa, Yuko Sato, Yoko Hayashi
  • Patent number: 11408030
    Abstract: Provided herein is technology for Alzheimer's disease testing and particularly, but not exclusively, methods, compositions, and related uses for detecting the presence of Alzheimer's disease.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: August 9, 2022
    Inventors: Andy Madrid, Reid Spencer Alisch, Kirk Jeffrey Hogan
  • Patent number: 11408037
    Abstract: The invention provides methods, systems, and computer readable medium for detecting ploidy of chromosome segments or entire chromosomes, for detecting single nucleotide variants and for detecting both ploidy of chromosome segments and single nucleotide variants. In some aspects, the invention provides methods, systems, and computer readable medium for detecting cancer or a chromosomal abnormality in a gestating fetus.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: August 9, 2022
    Assignee: Natera, Inc.
    Inventors: Joshua Babiarz, Tudor Pompiliu Constantin, Lane A. Eubank, George Gemelos, Matthew Micah Hill, Huseyin Eser Kirkizlar, Matthew Rabinowitz, Onur Sakarya, Styrmir Sigurjonsson, Bernhard Zimmermann
  • Patent number: 11390875
    Abstract: Compositions and methods related to transgenic high oleic acid/ALS inhibitor-tolerant soybean plants are provided. Specifically, the present invention provides soybean plants having a DP-305423-1 event which imparts a high oleic acid phenotype and tolerance to at least one ALS-inhibiting herbicide. The soybean plant harboring the DP-305423-1 event comprises genomic/transgene junctions having at least the polynucleotide sequence of SEQ ID NO:8, 9, 14, 15, 20, 21, 83 or 84. The characterization of the genomic insertion site of the DP-305423-1 event provides for an enhanced breeding efficiency and enables the use of molecular markers to track the transgene insert in the breeding populations and progeny thereof. Various methods and compositions for the identification, detection, and use of the soybean DP-305423-1 events are provided.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: July 19, 2022
    Inventors: Kent Brink, Robert F Cressman, Jr., Anthony J Kinney, Knut Meyer, Kevin L Stecca, Natalie N Weber, Cathy Xiaoyan Zhong
  • Patent number: 11378498
    Abstract: The present invention provides systems, apparatuses, and methods to detect the presence of fetal cells when mixed with a population of maternal cells in a sample and to test fetal abnormalities, i.e. aneuploidy. In addition, the present invention provides methods to determine when there are insufficient fetal cells for a determination and report a non-informative case. The present invention involves quantifying regions of genomic DNA from a mixed sample. More particularly the invention involves quantifying DNA polymorphisms from the mixed sample.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: July 5, 2022
    Assignees: Verinata Health, Inc., The General Hospital Corporation, GPR Scientific, LLC
    Inventors: Roland Stoughton, Ravi Kapur, Barb Ariel Cohen, Daniel Shoemaker, Ronald W. Davis, Mehmet Toner
  • Patent number: 11371100
    Abstract: The invention provides methods, systems, and computer readable medium for detecting ploidy of chromosome segments or entire chromosomes, for detecting single nucleotide variants and for detecting both ploidy of chromosome segments and single nucleotide variants. In some aspects, the invention provides methods, systems, and computer readable medium for detecting cancer or a chromosomal abnormality in a gestating fetus.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: June 28, 2022
    Assignee: Natera, Inc.
    Inventors: Joshua Babiarz, Tudor Pompiliu Constantin, Lane A. Eubank, George Gemelos, Matthew Micah Hill, Huseyin Eser Kirkizlar, Matthew Rabinowitz, Onur Sakarya, Styrmir Sigurjonsson, Bernhard Zimmermann
  • Patent number: 11359240
    Abstract: A method of detecting a target molecule, the method comprising: forming a complex of a target molecule, a capture oligonucleotide, an oligonucleotide primer, and a single-stranded circular DNA; performing a nucleic acid amplification reaction by rolling circle amplification based on the formation of the complex; and detecting amplified nucleic acid; wherein the single-stranded circular DNA contains a first region, and a second region linked to the 3?-side of the first region, and preferably further contains a sequence complementary to a detection reagent-binding sequence; the primer contains a first aptamer sequence which binds to the target molecule, and a sequence which is linked to the 3?-side of the first aptamer sequence and is complementary to the first region of the single-stranded circular DNA; and the capture oligonucleotide contains a sequence complementary to the second region of the single-stranded circular DNA, and a second aptamer sequence which is linked to the 3?-side of the sequence complemen
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: June 14, 2022
    Assignee: National University Corporation Gunma University
    Inventor: Masayasu Kuwahara
  • Patent number: 11352667
    Abstract: A nucleic acid sequencing method involving contacting a spatially defined target nucleic acid sequence with N labeled oligonucleotide probes and performing measurements, at least at the spatially defined site (1), at M time instances during ligation or hybridization to form M data sets. The M data sets are co-processed in order to identify a label or absence of any label at the spatially defined site (1). A sequenced based of the target nucleic acid sequence is then determined based on the identified label of the identified absence of any label. The time-resolved measurements conducted during the actual hybridization of the oligonucleotide probes to the target nucleic acid sequence or the ligation of oligonucleotide probes to anchor probes on the target nucleic acid sequence improves the speed and accuracy of the sequencing as compared to the state of the art sequencing methods.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: June 7, 2022
    Assignee: 10x Genomics, Inc.
    Inventors: Thomas Hauling, Malte Kühnemund
  • Patent number: 11332798
    Abstract: Disclosed are nucleic acid oligomers, including amplification oligomers, capture probes, and detection probes, for detection of Zika virus nucleic acid. Also disclosed are methods of specific nucleic acid amplification and detection using the disclosed oligomers, as well as corresponding reaction mixtures and kits.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: May 17, 2022
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Kui Gao, Jeffrey M. Linnen
  • Patent number: 11326201
    Abstract: The present disclosure relates to a method for removing a non-target RNA from an RNA sample, including: performing reverse transcription on an RNA sample by using a reverse transcription primer, and removing an RNA template, to obtain a non-target first-strand cDNA and a target first-strand cDNA; hybridizing the non-target first-strand cDNA with a specific probe to obtain a non-target first-strand cDNA-probe complex; and digesting the non-target first-strand cDNA-probe complex by using a duplex-specific nuclease to obtain the target first-strand cDNA. The non-target first-strand cDNA-probe complex can be further extended to obtain a double-stranded DNA region that can be completely digested by the duplex-specific nuclease, then the duplex-specific nuclease is added for digestion.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: May 10, 2022
    Assignee: BEIJING TRANSGEN BIOTECH CO., LTD.
    Inventors: Liang Geng, Wen Xin
  • Patent number: 11319596
    Abstract: The invention provides methods, systems, and computer readable medium for detecting ploidy of chromosome segments or entire chromosomes, for detecting single nucleotide variants and for detecting both ploidy of chromosome segments and single nucleotide variants. In some aspects, the invention provides methods, systems, and computer readable medium for detecting cancer or a chromosomal abnormality in a gestating fetus.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: May 3, 2022
    Assignee: Natera, Inc.
    Inventors: Joshua Babiarz, Tudor Pompiliu Constantin, Lane A. Eubank, George Gemelos, Matthew Micah Hill, Huseyin Eser Kirkizlar, Matthew Rabinowitz, Onur Sakarya, Styrmir Sigurjonsson, Bernhard Zimmermann
  • Patent number: 11319582
    Abstract: Provided herein are methods for isolating nucleic acids from intact cells in a sample of intact cells, contamination dead cells, cell debris, and biofilm using two separation steps, either by centrifugation or filtration, performed in sequentially. Also provided is a method for isolating nucleic acids from intact cells using a first separation step followed by treatment with a nuclease and then a second separating step. Provided herein is a related method for isolating DNA from intact cells using a nuclease that produces DNA cuts on double stranded DNA, followed by a second separating step.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: May 3, 2022
    Assignee: PathogenDx, Inc.
    Inventors: Michael Edward Hogan, Benjamin Alan Katchman, Candy Mavis Rivas, Yasmine Eve Baca