Patents Examined by Thai-Ba Trieu
  • Patent number: 10077744
    Abstract: A rich control for temporarily declining an air-fuel ratio of exhaust gas discharged from an engine combustion chamber is performed by an additional fuel being injected into a cylinder in an expansion stroke or an exhaust stroke in a state where a throttle opening degree is switched from a base throttle opening degree to a throttle opening degree for the rich control and an EGR rate is switched from a base EGR rate to an EGR rate for the rich control. The rich control is initiated by switching a low pressure side EGR control valve opening degree (VEGRL) to a low pressure side EGR control valve opening degree for the rich control (VEGRLR), then switching a high pressure side EGR control valve opening degree (VEGRH) to a high pressure side EGR control valve opening degree for the rich control (VEGRHR), then controlling the throttle opening degree (VTH), and then initiating the injection of the additional fuel (Qa).
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: September 18, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshito Nogi
  • Patent number: 10077712
    Abstract: A venting system for a turbocharger may include a bearing housing. The bearing housing may include an inner member. A housing wall may extend from the inner member and may include at least one vent disposed therethrough. A partition may be sealed to the housing wall and the inner member. The partition, the housing wall, and the inner member may collectively form a thermal dam.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: September 18, 2018
    Assignee: BorgWarner Inc.
    Inventor: Robert Thomas Race
  • Patent number: 10066541
    Abstract: Control techniques for a turbocharger of an engine utilize a wastegate valve configured to divert exhaust gas from a turbine of the turbocharger that is rotatably coupled to a compressor of the turbocharger. A controller is utilized to obtain a torque request for the engine, determine a target compressor power based on the engine torque request, determine a normalized target turbine power based on the target compressor power, determine a target position for the wastegate valve based on the normalized target turbine power and a normalized exhaust flow, and actuate the wastegate valve to the target position. Such control techniques involve the actual calculation of much less intermediate parameters, such as target turbine pressure ratio, which results in more efficient calibration and implementation.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: September 4, 2018
    Assignee: FCA US LLC
    Inventors: Yang Li, Songping Yu
  • Patent number: 10066561
    Abstract: A method of controlling a rate of warm-up of an internal combustion engine fluidly connected to an exhaust system is disclosed. The method includes identifying a cold-start of the engine. The method also includes regulating, in response to the identified cold-start of the engine, an exhaust pressure modulation (EPM) valve arranged in a main exhaust passage of the exhaust system. The main exhaust passage channels engine exhaust gas to the ambient. Such regulation of the EPM valve will restrict a flow of the engine exhaust gas to the ambient and increase exhaust gas backpressure in the exhaust system up to a predetermined pressure value. Furthermore, the subject regulation of the EPM valve will increase a load on and the rate of warm-up of the engine. A vehicle having an engine and a controller programmed to control a rate of the engine's warm-up of according to the method is also disclosed.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: September 4, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Chad E. Marlett, Lawrence P. Ziehr, Francesco Cianflone, Francesco Castorina
  • Patent number: 10066512
    Abstract: The application relates to a system for using the waste heat of an internal combustion engine through the Clausius-Rankine cycle. Such system prevents operating medium from the Clausius-Rankine cycle from leaking into combustion air or exhaust air. The system has a first flow channel formed by at least one first limiting component and a second flow channel formed by at least one second limiting component. The system has a fluid-conducting connection to the surroundings or to a receiving chamber from the first limiting component and preferably from the second limiting component, so that in the event of a leak the operating medium is conducted into the surroundings or into the receiving chamber.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: September 4, 2018
    Assignee: MAHLE INTERNATIONAL GMBH
    Inventors: Peter Geskes, Klaus Irmler, Eberhard Pantow, Michael Schmidt
  • Patent number: 10066539
    Abstract: A control unit controls a first power converter so as to make the speed of a motor/generator coincide with a prescribed speed command. A speed command (N*) set by an upper stream control system is inputted to a smoothing unit of the control unit. In the smoothing unit, the speed command (N*) is smoothed by a first-order lag element, and the rate of change is limited by a rate limiter to a prescribed value or less. For the speed command (Ns*) outputted from the smoothing unit, the difference (?N) from the actual speed (N) of the motor/generator is calculated in a difference calculator, a control command (S) based on this difference (?N) is generated in a control signal generator, and the first power converter is controlled on the basis of this control command (S). Fluctuations in the supply of power to the electric motor are thereby suppressed.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: September 4, 2018
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yukio Yamashita, Musashi Sakamoto, Yoshihisa Ono
  • Patent number: 10060419
    Abstract: A vehicle propulsion system includes an air heating chamber that receives inlet air from an air intake chamber and provides thrust through an exhaust chamber. A battery powered pulse generator generates a pulsed electrical output signal. An amplifier amplifies the pulsed electrical output signal to provide an amplified pulsed power output signal to the air heating chamber. The amplified pulsed power output signal directly heats the inlet air to generate thrust through the exhaust chamber.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: August 28, 2018
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Lael Rudd, Robert W. Parker, Edmond K. Tajirian
  • Patent number: 10060397
    Abstract: An outboard turbocharged internal combustion engine includes an outboard engine housing. An exhaust gas turbocharger has a turbine and a charger disposed on the outboard engine housing. A charge air cooler is integrated in an intake unit. The intake unit is routed via connecting ducts and includes a unit container having first, second, and third container sections. The first container section is connected to the second container section accommodating the charge air cooler. The second container section is connected to the third container section that carries air to the charge air cooler. The third container section is formed of a tubular body tapering downward from the second container section toward the charger of the exhaust gas turbocharger. The first container section, the second container section, and the third container section are combined as an integral unit forming an intake unit module composed of a light alloy.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: August 28, 2018
    Assignee: Neander Motors AG
    Inventor: Claus Bruestle
  • Patent number: 10060628
    Abstract: A fuel nozzle assembly for a gas turbine engine is disclosed herein. The fuel nozzle assembly may include a fuel injector including an outer jacket having a first end and a second end with a threaded surface disposed therebetween. The first end of the fuel injector may include a cylindrical sealing surface. The fuel nozzle assembly also may include an annular hub including an aperture having a first end and a second end with a threaded surface disposed therebetween. The aperture may be configured to at least partially house the fuel injector therein and includes a conical seat about the first end. The cylindrical sealing surface may swage inward along the conical seat to form a seal therebetween as the liquid fuel injector is threaded into the aperture.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: August 28, 2018
    Assignee: General Electric Company
    Inventors: Thomas Edward Johnson, Kaitlin Marie Graham
  • Patent number: 10060335
    Abstract: Methods and systems are provided for a turbocharger of an engine. In one example, a method may include balancing a pressure differential between compressor wheels of the turbocharger.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: August 28, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Helmut Matthias Kindl, Vanco Smiljanovski, Joerg Kemmerling, Franz Arnd Sommerhoff, Andreas Kuske
  • Patent number: 10054068
    Abstract: A two stage turbocharger for an internal combustion engine, the two stage turbocharger comprising a high pressure turbine fluidly connected to an exhaust manifold of the engine through a high pressure turbine inlet duct and a low pressure turbine fluidly connected to the high pressure turbine through a low pressure turbine inlet duct, wherein the low pressure turbine is a variable geometry turbine, wherein the two stage turbocharger comprise a bypass duct system to bypass the variable geometry low pressure turbine, wherein the bypass duct system comprises a bypass valve.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: August 21, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Armando Mogavero, Fiorello Losano, Cesare Maria Meano, Eugenio Manta, Vincenzo Petronzi
  • Patent number: 10054039
    Abstract: A system having an engine is provided. The system includes a high pressure (HP) turbocharger and a low pressure (LP) turbocharger connected in series with each other. The system also includes a first valve assembly configured to selectively bypass at least a portion of the exhaust from the engine to the LP turbocharger. The system also includes a storage tank configured to store a pressurized fluid and configured to be in fluid communication with the HP turbocharger and the LP turbocharger. The system further includes a second valve assembly in fluid communication with the storage tank, the HP turbocharger and the LP turbocharger. The system also includes a controller operatively coupled to the first valve assembly and the second valve assembly. The controller is configured to selectively operate the first valve assembly and the second valve assembly based on a change in a load requirement on the engine.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: August 21, 2018
    Assignee: Caterpillar Inc.
    Inventors: Xinyu Ge, Yongli Qi
  • Patent number: 10047638
    Abstract: Disclosed is a heat energy recovery system including: a heat energy recovery circuit that causes a working medium to circulate by means of a circulation pump to exchange heat with supercharged air from a supercharger via a first heater and exchange heat with steam from an exhaust-gas economizer via a second heater, in order to integrally drive a turbine and a generator; and a controller that performs stop control to stop the circulation pump based on the flow state of the steam in a first steam flow path that causes the steam to flow from the exhaust-gas economizer to a soot blower.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: August 14, 2018
    Assignees: Kobe Steel, Ltd., ASAHI SHIPPING CO., LTD., TSUNEISHI SHIPBUILDING Co., Ltd., MIURA Co., Ltd.
    Inventors: Shigeto Adachi, Yutaka Narukawa, Tetsuro Fujii, Kazuya Arahira, Masakazu Yamamoto, Yutaka Kobayashi, Toshio Sageshima
  • Patent number: 10047666
    Abstract: An object is to enable low fuel-consumption operation of an engine by controlling a back pressure and a power generation amount taking account of a trade-off relationship between deterioration of fuel efficiency due to an increase in pumping loss due to a back-pressure rise of the engine and improvement of fuel efficiency due to recovery of exhaust energy by a turbo compound.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: August 14, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yukio Yamashita, Ko Takayanagi, Ryo Sase, Atsushi Matsuo, Rikikazu Hayashi
  • Patent number: 10041397
    Abstract: An electric waste gate valve system includes a waste gate valve, an electric actuator that drives waste gate valve, an impeller rotation speed sensor, and an electronic control unit. The waste gate valve opens and closes a bypass passage that bypasses a turbine impeller of a turbocharger. The electronic control unit is configured to calculate a predicted value of the rotation speed of the impeller when the waste gate valve is closed. The electronic control unit is configured to drive the electric actuator in a valve-closing direction to close the waste gate valve. The electronic control unit is configured to stop the driving of the waste gate valve by the electric actuator when the rotation speed of the impeller detected by the impeller rotation speed sensor increases to a reference value determined based on the predicted value.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: August 7, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masanori Saeki
  • Patent number: 10036337
    Abstract: Various systems and methods are provided for exhaust gas recirculation. In one example, an exhaust gas recirculation (EGR) system includes an EGR passage coupling an engine exhaust system to an engine intake system, a first EGR cooler positioned in the EGR passage, the first EGR cooler configured to cool EGR with a first fluid, and a second EGR cooler positioned in the EGR passage downstream of the first EGR cooler, the second EGR cooler configured to cool EGR with a second fluid.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: July 31, 2018
    Assignee: General Electric Company
    Inventors: Shrinivas Govind, Jayesh Jain, Pushkar Haresh Sheth
  • Patent number: 10036308
    Abstract: In a method for operating a combustion engine in which exhaust gas located in a cylinder during an outlet cycle thereof is ejected from the cylinder and supplied to an exhaust system, a particularly high specific power output of the combustion engine and/or a particularly low specific fuel consumption are to be made possible, in a particularly simple and reliable manner. For this purpose, according to the invention, in a first cycle phase of the outlet cycle the pulse of the exhaust gas pressure wave flowing out of the cylinder is transmitted in whole or in part to the primary side of an exhaust gas charge pump, before the exhaust gas is passed to the exhaust system in a second cycle phase of the outlet cycle.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: July 31, 2018
    Inventor: Arno Hofmann
  • Patent number: 10036309
    Abstract: The life of an actuator such as a turbocharger VTG actuator is extended by reducing heat conduction from the turbine housing along the control linkage to the actuator link and into the actuator, thereby protecting sensitive electronic components. To this end, the control linkage may be made of a thermal energy retarding material in order to retard heat from the turbine housing assembly reaching the actuator.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: July 31, 2018
    Assignee: BorgWarner Inc.
    Inventor: Vahidin Alajbegovic
  • Patent number: 10030869
    Abstract: A premix fuel nozzle assembly includes a center body including a sleeve having an inner surface and a pilot premix fuel nozzle assembly that extends axially through the center body within the sleeve and defines a pilot air passage within the center body. The pilot premix fuel nozzle assembly includes a premix tip having a plurality of premix tubes that define premix passages in fluid communication with the pilot air passage. At least one of the premix tubes includes a fuel port. The premix fuel nozzle assembly further includes a pilot fuel flow path that is defined radially between the pilot premix fuel nozzle assembly and the inner surface of the sleeve and a fuel plenum that is at least partially defined between the sleeve inner surface and an outer surface of the premix tip. The fuel ports provide for fluid communication between the fuel plenum and the premix passages.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: July 24, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Michael Christopher Gibson, Dereck Joseph Ouellet
  • Patent number: 10024230
    Abstract: A controller for an engine system includes an exhaust-driven turbocharger including a compressor and a turbine, an exhaust gas recirculation unit configured to recirculate exhaust gas from a downstream portion of the turbine in an exhaust gas passage to an upstream portion of the compressor in an intake gas passage, and a cooling unit configured to cool the turbine, the controller includes an electronic control unit. The electronic control unit is configured to set a degree of cooling of the turbine based on a predetermined condition in which a gas temperature at an outlet portion of the compressor is higher than a predetermined temperature and the recirculating of exhaust gas is performed, and set a higher degree of cooling of the turbine when the predetermined condition is satisfied compared to a degree of cooling of the turbine when the predetermined condition is not satisfied.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: July 17, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Akitoshi Iwata