Patents Examined by Thai Dinh
  • Patent number: 8446115
    Abstract: A motor drive device has a drive circuit for driving a motor, and a control section for controlling the drive circuit. The control section has a current command value calculating portion for calculating a current command value, a rotation calculating portion for calculating a rotation angle and an angular speed of the motor, a current command value correcting portion for correcting the current command value based on the rotation angle, a voltage command value calculating portion for calculating a voltage command value based on the current command value, a voltage command value correcting portion for correcting the voltage command value based on the current command value and the rotation angle and the angular speed, and a drive signal generating portion for generating a drive signal based on the voltage command value.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: May 21, 2013
    Assignee: Omron Automotive Electronics Co., Ltd.
    Inventors: Michisada Yabuguchi, Takenobu Nakamura, Shinichi Kuratani
  • Patent number: 8432111
    Abstract: A method of the Pulse Amplitude Modulation for the Sensorless Brushless motor, which includes a start-up circuit, a phase detect circuit, a phase commutation circuit, a driving circuit, BEMF detection circuit, and frequency detector, utilizes the control signal of the phase commutation circuit to control the driving circuit so as to drive the outer motor coil and detect the control signal for the driving motor driving circuit by a detection circuit. The motor system can be controlled to reduce the discharge speed to avoid the motor driving circuit shutdown and further speed up the start-up time for the next charging period of the motor driving circuit to achieve the effect of low speed rotation and power saving.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: April 30, 2013
    Assignee: Amtek Semiconductor Co., Ltd.
    Inventors: Teng-Hui Lee, Chan-Chih Liu
  • Patent number: 8427094
    Abstract: A method for controlling positioning of an actuator having a wave gear device uses an exact linearization technique to compensate effects relative to positioning control of a load shaft caused by the non-linear spring characteristics of the wave gear device. A plant model is constructed from the actuator, and linearized using the exact linearization technique; measurements are taken of non-linear elastic deformation of the wave gear device relative to load torque; the non-linear spring model ?g(?tw) is defined using a cubic polynomial with the constant defined as zero to allow the measurement results to be recreated; and the current input into the model and motor position of the model when a load acceleration command is a command value are entered into a processor arranged as a semi-closed loop control system for controlling positioning of the load shaft, as a feed-forward current command and a feed-forward motor position command.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: April 23, 2013
    Assignees: Harmonic Drive Systems, Inc., National University Corporation Nagoya Institute of Technology
    Inventors: Yoshifumi Okitsu, Yuki Kato, Kozo Sasaki, Makoto Iwasaki
  • Patent number: 8427092
    Abstract: A permanent magnet generator system provides protection from fault conditions. The system includes a permanent magnet generator having a first, second, and third winding wherein each winding has a first end and a second end. During the normal mode of operation, the first ends of the windings are shorted to a first neutral point and alternating current (AC) voltage developed in the first, second and third windings is provided to a primary output associated with the second ends of the windings. In response to a fault condition on the primary output side of the system, the second ends of the windings are shorted together to a second neutral point and the first ends of the windings are disconnected from the first neutral point. During the backup mode, AC voltage developed in the windings is provided to a secondary output associated with the first ends of the windings.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: April 23, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Gregory I. Rozman, Steven J. Moss
  • Patent number: 8427095
    Abstract: The actuation system including a control system, an actuator comprising a drive part and a step motor comprising a rotor and a stator with at least one electric phase, an actuated system comprising a controlled element coupled to the drive part, and an elastic part capable of generating an elastic return force on the rotor of the motor or on the drive part. The control system comprises means for measuring an induced electric parameter on the phase of the stator after switching off the current of said at least one phase of the stator to detect a return of the rotor resulting from elastic return force when a mechanical clearance is overtaken.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: April 23, 2013
    Assignee: Societe Industrielle de Sonceboz S.A.
    Inventors: Stéphane Bilat, Georges Gerber
  • Patent number: 8421397
    Abstract: A system for controlling operation of a motor drive during fast start-up of an induction motor is disclosed. The system includes an AC motor drive having a PWM inverter and a control system to generate a command signal to cause the PWM inverter to control an output of the AC motor drive. The control system includes a start-up modulator that is selectively operable during start-up acceleration of the AC motor, the start-up modulator programmed to determine a motor current applied to the AC motor and a voltage of a DC bus, generate a first frequency offset that causes a frequency reference of the command signal to be decreased when the motor current is greater than a reference current threshold, and generate a second frequency offset that causes the frequency reference of the command signal to be increased when the DC bus voltage is greater than a reference voltage threshold.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: April 16, 2013
    Assignee: Eaton Corporation
    Inventors: Anbo Yu, Lei Zhang, Kevin Lee
  • Patent number: 8421382
    Abstract: A method for controlling a motor can suppress an influence of speed variation due to cogging of the motor. The method includes performing a preliminary drive process to output a first driving signal to the motor to move the mechanism, performing the preliminary drive process to output a second driving signal corresponding to a cogging period of the motor to the motor as well as output the first driving signal, to move the mechanism, determining parameters which include an output waveform and output timing of the second driving signal based on a speed of the mechanism in the preliminary drive process, and outputting the second driving signal according to the determined parameters to the motor as well as outputting the first driving signal to the motor in an actual drive process to perform predetermined processing by moving the mechanism.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: April 16, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Manabu Tsumoto
  • Patent number: 8421383
    Abstract: A rotation control circuit comprises a motor-driving unit and a rotation-switching unit. The motor-driving unit is coupled to a motor of a fan. The rotation-switching unit is coupled to the motor-driving unit and has at least a charging-discharging circuit for generating a rotation control command, the rotation control command controls the motor to rotate in a forward direction for a time period when the motor starts to operate, and controls the motor to rotate in a backward direction opposite to the forward direction.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: April 16, 2013
    Assignee: Sunonwealth Electric Machine Industry Co., Ltd.
    Inventors: Alex Horng, Chi-Hung Kuo, Chung-Ken Cheng
  • Patent number: 8415913
    Abstract: A control circuit generates a driving signal indicating an actuator torque. A first operation unit generates position, speed, and acceleration signals, based upon a detection signal indicating the actuator mover state. A second operation unit generates a first difference signal indicating the difference between a target signal and the position signal. A third operation unit generates a second difference signal indicating the difference between signals based on the first difference signal and the speed signal. A fourth operation unit generates a position control signal such that the second difference signal becomes zero. A fifth operation unit generates a third difference signal indicating the difference between signals based on a driving signal and the acceleration signal. A sixth operation unit generates a driving signal by summing a signal based on the position control signal and a disturbance estimation signal based on the third difference signal.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: April 9, 2013
    Assignee: Rohm Co., Ltd.
    Inventor: Tatsuro Shimizu
  • Patent number: 8395334
    Abstract: A refrigerator includes a drawer having a door and a receiving box attached thereto. The drawer may be automatically moved in forward and backward directions. A supply of standby voltage may be intercepted by a drawer driving mechanism when the door is closed so as to reduce power consumption and improve response time to drawer opening and closing commands.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: March 12, 2013
    Assignee: LG Electronics Inc.
    Inventors: Yong Hwan Eom, Myung Keun Yoo, Hyoun Jeong Shin, Ok Sun Yu, Young Jin Kim, Seung Do Han
  • Patent number: 8390224
    Abstract: A drive device for an adjusting device for adjusting a vehicle component of a vehicle includes an electronically commutated motor and an electronic control device which actuates the electronically commutated motor with an actuating voltage. The electronic control device can adapt the signal form of the actuating voltage on the basis of at least one operating parameter in order to optimize the power output, the acoustics, the electromagnetic irradiation and/or the heating of the drive device.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: March 5, 2013
    Assignee: Brose Fahrzeugteile GmbH & Co. KG, Coburg
    Inventor: Uwe Klippert
  • Patent number: 8390236
    Abstract: A drive system is disclosed for operating an electric device. The drive system includes an electric motor having a permanent magnet rotor connectable to the electric device for controlling the operation of it by a limited-angle rotation, the electric motor further including a stator winding. The drive system includes a drive circuit connected to the stator winding. The permanent magnet rotor can be arranged to be aligned to a magnetic field created by the stator winding when supplied with current from the drive circuit, so that a maximum torque can be applied to the rotor and thereby to the movable part within an interval of ±25 degrees around a middle position between two end positions of the limited-angle rotation of the rotor.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 5, 2013
    Assignee: ABB Research Ltd
    Inventors: Magnus Backman, Stefan Valdemarsson
  • Patent number: 8390240
    Abstract: Systems and methods are provided for an automotive drive system using an absolute position sensor for field-oriented control of an induction motor. An automotive drive system comprises an induction motor having a rotor, and a position sensor coupled to the induction motor. The position sensor is configured to sense an absolute angular position of the rotor. A processor may be coupled to the position sensor and configured to determine a relative angular position of the rotor based on a difference between the absolute angular position and an initial angular position obtained when the induction motor is started. A controller may be coupled to the induction motor and the processor and configured to provide field-oriented control of the induction motor based on the relative angular position of the rotor.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: March 5, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Constantin C. Stancu, Silva Hiti, Robert T. Dawsey, Erik Hatch, Matthew D. Laba, Peter J. Savagian
  • Patent number: 8390239
    Abstract: A control circuit for a single-phase AC motor of a dryer, including at least an electronic starting circuit including at least a starting control unit, a first drive circuit, and a bidirectional triode thyristor, a second drive circuit, and a mechanical switch K. The bidirectional triode thyristor is serially connected to a starting winding and a starting capacitor of the motor, and connected to an AC input. The starting control unit is connected to a control end of the bidirectional triode thyristor via the first drive circuit. The mechanical switch K is serially connected to an electrical heating wire, and is connected to the AC input. The starting control unit is connected to a control end of the mechanical switch K via the second drive circuit. The first drive circuit and the second drive circuit are interlocked with each other.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: March 5, 2013
    Assignee: Zhongshan Broad-Ocean Motor Manufacturing Co., Ltd.
    Inventor: Yong Zhao
  • Patent number: 8384332
    Abstract: An integrated gearbox/encoder and control system that includes: a gearbox with an output shaft connected to a mechanical load; a first sensor detecting the rotary position of the output shaft; a motor; a second sensor detecting the rotary position of the motor; and a system controller controlling motive drive to the motor. The two rotary position sensors permit direct determination of gearbox backlash which can be used in motor control. A drive current sensor similarly permits determination of a vibration signature for comparison with a standard.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: February 26, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Steven M. Meyer, Paul Kimelman
  • Patent number: 8384335
    Abstract: A motor driving apparatus comprises: an AC/DC converter which converts AC voltage supplied from an AC power source into DC voltage through PWM switching control of a power switching device; and a DC/AC converter which converts the DC voltage into variable-frequency AC voltage for driving a motor in a controlled manner. The AC/DC converter includes: a control unit which generates, based on an error between the DC voltage and a DC voltage command value, a PWM signal for the PWM switching control of the power switching device; and a frequency/gain varying unit which sets the frequency of the PWM signal to be generated by the control unit and a control gain in the control unit higher than their normal levels during a period in which a load in the DC/AC converter varies.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: February 26, 2013
    Assignee: FANUC Corporation
    Inventors: Wataru Kuroki, Takashi Harada, Shinichi Horikoshi, Yasusuke Iwashita
  • Patent number: 8368342
    Abstract: An apparatus for generating electromagnetic torque in an N-phase electric machine, N being a positive integer, includes N lines, each of the N lines including an input terminal, an output terminal, and a pair of thyristors, or of one thyristor and one diode pair. The N lines are connected between a mains and the electric machine. An apparatus is provided for repeatedly or continuously determining at least the sign of a voltage over the thyristor or diode-thyristor pair in at least one of the N lines, means are provided for repeatedly or continuously determining at least one parameter related to the electromagnetic field in the electric machine, and a control device is provided for controlling the operation of the thyristor or diode-thyristor pair of the at least one of the N lines.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: February 5, 2013
    Assignee: ABB Research Ltd.
    Inventor: Pierluigi Tenca
  • Patent number: 8368335
    Abstract: Presented is a system for controlling a roller shade. The system includes a flexible shade material having a lower end, a roller tube windingly receiving the flexible shade material, and a reversible motor for rotating the roller tube to move the lower end of the shade material between a first and second position. The system further includes an optical sensor for capturing an image frame of the shade material at a plurality of linear positions as the lower end of the flexible shade material moves from the first position to the second position. The system further includes a motor controller for controlling the reversible motor to move the lower end of the shade material from the first position to the second position using a variable linear velocity profile in response to position information obtained from the plurality of captured image frames.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: February 5, 2013
    Assignee: Crestron Electronics Inc.
    Inventors: George Feldstein, Mark LaBosco
  • Patent number: 8362733
    Abstract: A motor drive system includes: a three-phase motor; a power conversion device that supplies power for driving the three-phase motor; and an output filter that is arranged between an output of the power conversion device and the three-phase motor and has a configuration in which a setting value of a filter resonance frequency is selectable and changeable.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: January 29, 2013
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Aiko Inuduka, Tsuyoshi Higuchi
  • Patent number: 8354814
    Abstract: A fan system circuit module including a stable voltage input terminal for receiving a stable voltage, an operation unit electrically connected to the stable voltage input terminal and a drive chip. The operation unit includes a first resistor, a second resistor, a first capacitor and a third resistor. After powered on at the stable voltage, the operation unit generates an operation signal for the drive chip to decrease drive current value of the fan. In case that a lock of the fan takes place, the drive chip can effectively decrease the block current. The circuit module has soft-start function and provides block current protection effect so as to avoid malfunctioning of the fan system due to too great start current of the fan and avoid burnout of the fan due to high rise of temperature.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: January 15, 2013
    Assignee: Asia Vital Components (China) Co., Ltd.
    Inventor: Jian-Lin Yang