Patents Examined by Thaian N. Ton
  • Patent number: 10793874
    Abstract: Methods and compositions are provided for generating targeted genetic modifications on the Y chromosome or a challenging target locus. Compositions include an in vitro culture comprising an XY pluripotent and/or totipotent animal cell (i.e., XY ES cells or XY iPS cells) having a modification that decreases the level and/or activity of an Sry protein; and, culturing these cells in a medium that promotes development of XY F0 fertile females. Such compositions find use in various methods for making a fertile female XY non-human mammal in an F0 generation.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: October 6, 2020
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Gustavo Droguett, Anthony Gagliardi, Junko Kuno, Wojtek Auerbach, David Valenzuela
  • Patent number: 10787645
    Abstract: The present invention relates to the fields of life sciences and medicine. Specifically, the invention relates to cancer therapies of humans. More specifically, the present invention relates to oncolytic adenoviral vectors alone or together with therapeutic compositions for therapeutic uses and therapeutic methods for cancer. In one aspect the present invention relates to separate administration of adoptive cell therapeutic composition and oncolytic adenoviral vectors. Furthermore, the present invention relates to a pharmaceutical kit and a pharmaceutical composition, both utilizing oncolytic adenoviral vectors.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: September 29, 2020
    Assignee: TILT Biotherapeutics Oy
    Inventors: Akseli Hemminki, Markus Vähä-Koskela, Siri Tähtinen, Vincenzo Cerullo
  • Patent number: 10786534
    Abstract: The present disclosure relates to the production of red blood cells from hematopoietic stem cells, by differentiating such cells in the presence of a protein that induces cell survival and proliferation.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: September 29, 2020
    Assignee: TAIGA BIOTECHNOLOGIES, INC.
    Inventors: Brian C. Turner, Yosef Refaeli, Gregory A. Bird
  • Patent number: 10785968
    Abstract: Genetically modified non-human animals are provided that may be used to model human hematopoietic cell development, function, or disease. The genetically modified non-human animals comprise a nucleic acid encoding human IL-6 operably linked to an IL-6 promoter. In some instances, the genetically modified non-human animal expressing human IL-6 also expresses at least one of human M-CSF, human IL-3, human GM-CSF, human SIRPa or human TPO. In some instances, the genetically modified non-human animal is immunodeficient. In some such instances, the genetically modified non-human animal is engrafted with healthy or diseased human hematopoietic cells. Also provided are methods for using the subject genetically modified non-human animals in modeling human hematopoietic cell development, function, and/or disease, as well as reagents and kits thereof that find use in making the subject genetically modified non-human animals and/or practicing the subject methods.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: September 29, 2020
    Assignees: Regeneron Pharmaceuticals, Inc., Yale University, Institute for Research in Biomedicine (IRB)
    Inventors: Richard Flavell, Till Strowig, Markus G. Manz, Chiara Borsotti, Madhav Dhodapkar, Andrew J. Murphy, Sean Stevens, George D. Yancopoulos
  • Patent number: 10781425
    Abstract: The generation of complex organ tissues from human embryonic and pluripotent stem cells (PSCs) remains a major challenge for translational studies. It is shown that PSCs can be directed to differentiate into intestinal tissue in vitro by modulating the combinatorial activities of several signaling pathways in a step-wise fashion, effectively recapitulating in vivo fetal intestinal development. The resulting intestinal “organoids” were three-dimensional structures consisting of a polarized, columnar epithelium surrounded by mesenchyme that included a smooth muscle-like layer. The epithelium was patterned into crypt-like SOX9-positive proliferative zones and villus-like structures with all of the major functional cell types of the intestine. The culture system is used to demonstrate that expression of NEUROG3, a pro-endocrine transcription factor mutated in enteric anendocrinosis is sufficient to promote differentiation towards the enteroendocrine cell lineage.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: September 22, 2020
    Assignee: Children's Hospital Medical Center
    Inventors: James M. Wells, Aaron M. Zorn, Jason R. Spence, Noah F. Shroyer
  • Patent number: 10779517
    Abstract: A non-human animal model, method, spring, and kit for testing agents for treating wound scarring. The non-human test animal has a wound in a skin surface thereof, the wound having a perimeter edge; and a garter spring attached to the skin surface of the test animal in a position outside of the perimeter edge of the wound. The garter spring optionally has one or more bands for constricting the force exerted by the coil of the garter spring.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: September 22, 2020
    Assignee: The Board of Regents of the University of Oklahoma
    Inventors: Cullen McCarthy, William Berry, James Tomasek, Jason Lees
  • Patent number: 10767164
    Abstract: Human pluripotent stem cells (hPSCs) are promising cell source to produce therapeutic endocrine cells for diabetes treatment. A gel solution made by decellularized tissue-specific extracellular matrix (dpECM) significantly promotes three-dimensional (3D) islet-like organogenesis during induced hPSC differentiation into endocrine lineages. Islet organoids are self-organized even in a two-dimensional (2D) culture mode. Cells derived from hPSCs differentiated on such ECM coated substrates exhibit similar cellular composition to native pancreatic islets. These cells express islet signature markers insulin, PDX-1, C-peptide, MafA, glucagon, somatostatin, and pancreatic polypeptide, and secrete more insulin in response to glucose level compared to a traditional matrix substrate (Matrigel). The dpECM facilitates generating more C-peptide+/glucagon? cells rather than C-peptide+/glucagon+ cells. Remarkably, dpECM also facilitated intra-organoid vascularity by generating endothelial cells and pericytes.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: September 8, 2020
    Assignee: The Research Foundation for The State University of New York
    Inventors: Sha Jin, Kaiming Ye, Huanjing Bi
  • Patent number: 10765728
    Abstract: The present invention pertains to engineered immune cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered immune cells of the present invention are characterized in that at least one gene selected from a gene encoding GCN2 and a gene encoding PRDM1 is inactivated or repressed. Such modified Immune cells are resistant to an arginine and/or tryptophan depleted microenvironment caused by, e.g., tumor cells, which makes the immune cells of the invention particularly suitable for immunotherapy. The invention opens the way to standard and affordable adoptive immunotherapy strategies using immune cells for treating different types of malignancies.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: September 8, 2020
    Assignee: CELLECTIS
    Inventors: Laurent Poirot, Mathieu Simon
  • Patent number: 10745752
    Abstract: The generation of clinical-grade cell-based therapies from human embryonic stein cells or cells reprogrammed to pluripotency from somatic cells, requires stringent quality controls to insure that the cells have long enough telomeres and resulting cellular lifespan to be clinically useful, and normal gene expression and genomic integrity so as to insure cells with a desired and reproducible phenotype and to reduce the risk of the malignant transformation of cells. Assays useful in identifying human embryonic stem cell lines and pluripotent cells resulting from the transcriptional reprogramming of somatic cells that have embryonic telomere length are described as well as quality control assays for screening genomic integrity in cells expanded and banked for therapeutic use, as well as assays to identify cells capable of abnormal immortalization.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: August 18, 2020
    Inventors: Michael D. West, Karen B. Chapman, Walter D. Funk
  • Patent number: 10744183
    Abstract: The present disclosure relates to methods for increasing telomere length in one or more human adult cells and/or increasing genome stability of one or more human adult cells, for example by contacting one or more human adult cells with an agent that increases expression of Zscan4 in the one or more human adult cells. Methods of treating a subject in need of telomere lengthening, treating a disease or condition associated with a telomere abnormality, of rejuvenating one or more human adult cells, of rejuvenating tissues or organs, and of rejuvenating a subject in need thereof, for example by contacting one or more human adult cells in the subject with an agent that increases expression of Zscan4, or by administering to a subject in need thereof, an agent that increases expression of Zscan4 is also provided.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: August 18, 2020
    Assignee: Elixirgen Therapeutics, Inc.
    Inventor: Minoru S. H. Ko
  • Patent number: 10738355
    Abstract: The present invention relates to the provision of vaccines which are specific for a patient's tumor and are potentially useful for immunotherapy of the primary tumor as well as tumor metastases. In one aspect, the present invention relates to a method for providing an individualized cancer vaccine comprising the steps: (a) identifying cancer specific somatic mutations in a tumor specimen of a cancer patient to provide a cancer mutation signature of the patient; and (b) providing a vaccine featuring the cancer mutation signature obtained in step (a). In a further aspect, the present invention relates to vaccines which are obtainable by said method.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: August 11, 2020
    Assignees: TRON-Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gGmbH, BioNTech RNA Pharmaceuticals GmbH
    Inventors: Ugur Sahin, Sebastian Kreiter, Mustafa Diken, Jan Diekmann, Michael Koslowski, Cedrik Britten, John Christopher Castle, Martin Lower, Bernhard Renard, Tana Omokoko, Johannes Hendrikus De Graaf
  • Patent number: 10738324
    Abstract: Disclosed is a vector, preferably a viral vector, containing a treatment factor and/or a nucleic acid encoding a cytotoxic factor under control of an Aurora kinase promoter. Also disclosed is a virus vector in which the promoter of a nucleic acid encoding a factor necessary to the replication or assembly of at least one virus is substituted by the Aurora kinase promoter. Also disclosed are a disease treatment agent, in particular a cancer treatment agent, which contains the aforementioned vector, and a clinical diagnostic agent, in particular a cancer diagnostic agent, which contains the vector containing the Aurora kinase promoter.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: August 11, 2020
    Assignee: KAGOSHIMA UNIVERSITY
    Inventor: Ken-ichiro Kosai
  • Patent number: 10736933
    Abstract: The invention relates to a peptide capable of activating NK cell-mediated immunity, the peptide comprising or consisting of the amino acid sequence XnAX2X1, Wherein Xn is an amino acid sequence of between 5 and 12 residues, and X1 is any amino acid; or leucine or phenylalanine; and X2 is alanine, threonine or serine. The invention further relates to an MHC class I molecule and the peptide, nucleic acids encoding the peptide, activated NK cells, and related compositions and methods, including use in methods of treatment.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: August 11, 2020
    Assignee: University of Southampton
    Inventor: Salim Iqbal Khakoo
  • Patent number: 10738281
    Abstract: The present invention provides for methods, compositions, and kits for producing an induced pluripotent stem cell from a non-pluripotent mammalian cell using a 3?-phosphoinositide-dependent kinase-1 (PDK1) activator or a compound that promotes glycolytic metabolism as well as other small molecules.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: August 11, 2020
    Assignee: The Scripps Research Institute
    Inventors: Saiyong Zhu, Sheng Ding
  • Patent number: 10724002
    Abstract: Methods and compositions of erythroid cells that produce adult ?-hemoglobin, generated by culturing CD31+, CD31+/CD34+ or CD34+ cells from embryonic stem cells under serum-free culture conditions.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: July 28, 2020
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Igor I. Slukvin, James A. Thomson, Maksym A. Vodyanyk, Maryna E. Gumenyuk
  • Patent number: 10711249
    Abstract: A method for producing hepatocytes from hepatoblasts is provided. The method includes the step of culturing the hepatoblasts in a medium containing a compound selected from the group consisting of pregnenolone and an adrenergic agonist. The hepatoblasts can be obtained by culturing endodermal cells in a medium containing DMSO, and the endodermal cells can be obtained by culturing pluripotent stem cells in a medium containing Activin A and a GSK-3? inhibitor. Accordingly, a method for producing hepatocytes from pluripotent stem cells is also provided by employing the method of the present invention.
    Type: Grant
    Filed: December 25, 2015
    Date of Patent: July 14, 2020
    Assignee: KYOTO UNIVERSITY
    Inventors: Kenji Osafune, Maki Kotaka
  • Patent number: 10711246
    Abstract: Provided are methods and products for obtaining cardiovascular lineage cells from hPSCs.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: July 14, 2020
    Assignee: UNIVERSITY HEALTH NETWORK
    Inventors: Gordon Keller, Alec Drake Witty, Steven James Kattman
  • Patent number: 10711285
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in prokaryotic and eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: July 14, 2020
    Assignees: THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Feng Zhang, Patrick Hsu, Chie-yu Lin, Fei Ran
  • Patent number: 10711280
    Abstract: Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR/Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: July 14, 2020
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Patent number: 10704025
    Abstract: The present invention provides methods to promote the differentiation of pluripotent stem cells into insulin producing cells. In particular, the present invention provides a method to produce cells expressing markers characteristic of the pancreatic endocrine lineage that co-express NKX6.1 and insulin and minimal amounts of glucagon.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: July 7, 2020
    Assignee: Janssen Biotech, Inc.
    Inventor: Jean Xu