Patents Examined by Thanh-Truc Trinh
  • Patent number: 8723016
    Abstract: A low profile solar collector having a number of light collecting lenses that fit closely together as an array on a flexible sheet. The lenses may focus light onto optical conveyance mechanisms which convey light from the lenses to a light-to-electrical converter or converters at an edge of the sheet. The lenses may alternatively focus light onto a light-to-electrical converter or converters. Conductors may convey electricity from the light-to-electrical converters to an electrical connection block at an edge of the sheet. The flexible sheet may be rolled, folded, or form fitted onto a non-planar surface. Two or more low profile solar collectors having a number of collecting lenses may be combined to form a larger sheet for solar collection. The electrical outputs of the collectors may be connected to provide one or more outputs as desired.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: May 13, 2014
    Assignee: Honeywell International Inc.
    Inventor: Yue Liu
  • Patent number: 8723020
    Abstract: The textured transparent conductive layer according to the invention is deposited on a substrate intended for a photoelectric device and exhibiting a surface morphology formed from a sequence of humps and hollows. It is characterized in that its hollows have a rounded base with a radius of more than 25 nm; the said hollows are virtually smooth, which is to say that, where they exhibit microroughnesses, these microroughnesses have a height on average of less than 5 nm; and its flanks form an angle with the plane of the substrate whose median of the absolute value is between 30° and 75°.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: May 13, 2014
    Assignee: Universite de Neuchatel
    Inventors: Julien Bailat, Christophe Ballif, Didier Domine
  • Patent number: 8721931
    Abstract: The present invention pertains to an electroconductive paste for a solar cell electrode, which includes a first silver powder with a crystallite size of 58 nm, a second silver powder with a different crystallite size from that of the first silver powder, glass frit, and resin binder. The present invention also provides a solar cell having an electrode containing the aforementioned electroconductive paste.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: May 13, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventor: Takuya Konno
  • Patent number: 8704078
    Abstract: The invention discloses differing embodiments of integrated solar cells and battery devices, in addition to disclosing methods of distributing energy. In one embodiment of the invention, an integrated solar cell and battery device may include a top layer, a middle layer, and a bottom layer. The top, middle, and bottom layers may be made of Nanoscale material, and may comprise sublayers. The top layer may include one or more solar cells, while the bottom layer may include a battery. The middle layer may direct thermal energy from the top layer to the bottom layer. The device may also include one or more electronic circuits adapted to control electrical charge along one or more paths between the solar cells and the battery. The Nanoscale materials of the top, middle, and bottom layers may comprise a plurality of Nanotubes or a plurality of Nanowires.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: April 22, 2014
    Assignee: The Boeing Company
    Inventors: James P. Huang, Russell M. Abbott, Namsoo P. Kim
  • Patent number: 8704080
    Abstract: The basic solar module (3) comprises a frame (31) that can be placed directly or indirectly on the ground, means (32) for processing solar radiation that are mounted on the frame, the frame comprising, which being situated between the ground and the frame, a rotating cylindrical rounded surface of which one axis of revolution is a swinging axis about which the frame can swing relative to the ground.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: April 22, 2014
    Assignee: Exosun
    Inventors: Frederic Conchy, Dominique Rochier
  • Patent number: 8664519
    Abstract: In one embodiment, a solar cell has base and emitter diffusion regions formed on the back side. The emitter diffusion region is configured to collect minority charge carriers in the solar cell, while the base diffusion region is configured to collect majority charge carriers. The emitter diffusion region may be a continuous region separating the base diffusion regions. Each of the base diffusion regions may have a reduced area to decrease minority charge carrier recombination losses without substantially increasing series resistance losses due to lateral flow of majority charge carriers. Each of the base diffusion regions may have a dot shape, for example.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: March 4, 2014
    Assignee: SunPower Corporation
    Inventors: Denis De Ceuster, Peter John Cousins
  • Patent number: 8664525
    Abstract: A method is disclosed for passivating and contacting a surface of a germanium substrate. A passivation layer of amorphous silicon material is formed on the germanium surface. A contact layer of metal, e.g., aluminum, is then formed on the passivation layer. The structure is heated so that the germanium surface makes contact with the contact layer. The aluminum contact layer can be configured for use as a mirroring surface for the back surface of the device. Thus, a passivated germanium surface is disclosed, as well as a solar cell comprising such a structure.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: March 4, 2014
    Assignees: IMEC, Umicore, N.V.
    Inventors: Niels Posthuma, Giovanni Flamand, Jef Poortmans, Johan van der Heide
  • Patent number: 8658454
    Abstract: Methods of fabricating solar cells are described. A porous layer may be formed on a surface of a substrate, the porous layer including a plurality of particles and a plurality of voids. A solution may be dispensed into one or more regions of the porous layer to provide a patterned composite layer. The substrate may then be heated.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: February 25, 2014
    Assignee: SunPower Corporation
    Inventors: Thomas Pass, Robert Rogers
  • Patent number: 8658881
    Abstract: A thermoelectric generator comprises an electrical circuit having two or more thermocouple junctions (600, 615), a switch (620), a controller (640), and a series resonant circuit consisting of a capacitor (625) and an inductor in the form of a transformer (630). The thermocouple junctions operate between two temperature reservoirs (605, 610) operating at temperatures T2 and T1, respectively, that are sufficiently different to enable the circuit to supply power to a load (635). Using sense lines (650, 655) the controller forces the switch to advance to the next throw at the proper time, forcing the circuit to operate at or near resonance. With each operation of the switch, one junction at a time is connected to the resonant circuit, while one or more junctions are left in an open-circuit condition. By allowing the temporarily disconnected junctions sufficient time to reach thermal equilibrium with the temperature reservoirs, isothermal equilibrium is achieved.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: February 25, 2014
    Inventors: Kan K. Cheng, Mindy M. Cheng
  • Patent number: 8658880
    Abstract: A method of drawing a glass clad wire is provided herein, the method comprising: (i) sealing off one end of a glass tube such that the tube has an open end and a closed end; (ii) introducing a wire material inside the glass tube; (iii) heating a portion of the glass tube such that the glass partially melts to form a first ampoule containing the wire material to be used in a drawing operation; (iv) introducing the first ampoule containing the wire material into a heating device; (v) increasing the temperature within the heating device such that the glass tube is heated enough for it to be drawn and wire material melts; and (vi) drawing the glass clad wire comprising a continuous wire of wire material, wherein the wire material is a metal, semi-metal, alloy, or semiconductor thermoelectrically active material, and wherein the wire diameter is equal to or smaller than about 5 ?m.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: February 25, 2014
    Assignee: ZT3 Technologies, Inc.
    Inventors: Biprodas Dutta, Ian L. Pegg, Sezhian Annamalai, Rudra P. Bhatta, Jugdersuren Battogtokh
  • Patent number: 8592680
    Abstract: The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: November 26, 2013
    Assignee: The Trustees of Princeton University
    Inventors: Barry P. Rand, Stephen R. Forrest
  • Patent number: 8581096
    Abstract: Replacing liquid electrolytes with solid or quasi-solid electrolytes facilitates the production of photovoltaic cells using continuous manufacturing processes, such as roll-to-roll or web processes, thus creating inexpensive, lightweight photovoltaic cells using flexible plastic substrates.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: November 12, 2013
    Assignee: Merck Patent GmbH
    Inventors: Kethinni Chittibabu, Savvas Hadjikyriacou
  • Patent number: 8581095
    Abstract: A photoelectrode has a conductive substrate and a semiconductor layer formed on the conductive substrate, the semiconductor layer being formed of semiconductor particles, the semiconductor layer having a plurality of layers, the plurality of layers being different in an average particle diameter of semiconductor particles from one another, a distal layer of the plurality of layers, placed at a location farther from the substrate, covering at least a part of side faces of a proximal layer of the plurality of layers, placed at a location closer to the substrate.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: November 12, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Atsushi Fukui, Ryohsuke Yamanaka, Liyuan Han
  • Patent number: 8563854
    Abstract: A dye-sensitized photoelectric conversion apparatus having enhanced energy conversion efficiency and a production method thereof are provided. The dye-sensitized photoelectric conversion apparatus which has semiconductor layer (13) containing a photosensitizing dye (14) and is constituted such that a charge carrier generated by allowing light to incident in the photosensitizing dye (14) is drawn out through the semiconductor layer (13), in which the semiconductor layer (13) is constituted by a plurality of regions (13A to 13D) having different energy levels from one another of a passage through which the charge carrier is transferred. Further, the plurality of regions (13A to 13D) are arranged such that the energy levels are reduced stepwise and/or continuously in the direction of drawing the charge carrier out.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: October 22, 2013
    Assignee: Sony Corporation
    Inventors: Tsutomu Imoto, Masao Oda
  • Patent number: 8541910
    Abstract: A microelectrical mechanical system (MEMS) microgenerator cell and array is disclosed. The MEMS microgenerator cell of the present invention is effective in the conversion of thermal energy to electrical energy. In accordance with the present invention, an explosive material is loaded into a chamber. A diaphragm seals the chamber, containing a plasma material. The explosive material is subsequently heated to its ignition temperature thereby raising the pressure in the chamber until the diaphragm ruptures. The rupture of the diaphragm results in the flow of plasma out of the chamber. Upon exiting the chamber, the plasma is forced to flow between two parallel rectangular electrodes. A magnetic field is applied in a direction orthogonal to both the plasma flow and the electrodes, thereby generating an electromagnetic field sufficient to a power source for MEMS devices.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: September 24, 2013
    Assignee: University of South Florida
    Inventors: Shekhar Bhansali, Rajsekhar Popuri
  • Patent number: 8536445
    Abstract: A method of forming a multijunction solar cell comprising an upper subcell, a middle subcell, and a lower subcell comprising providing first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on said substrate having a first band gap; forming a second solar subcell over said first subcell having a second band gap smaller than said first band gap; and forming a grading interlayer over said second subcell having a third band gap larger than said second band gap forming a third solar subcell having a fourth band gap smaller than said second band gap such that said third subcell is lattice mismatched with respect to said second subcell.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: September 17, 2013
    Assignee: Emcore Solar Power, Inc.
    Inventors: Arthur Cornfeld, Mark A. Stan
  • Patent number: 8536446
    Abstract: Multijunction solar cells that may include a first solar subcell with a first band gap, and a second solar subcell disposed over the first solar subcell and having a second band gap smaller than said first band gap. The solar cells may also include a grading interlayer disposed over the second solar subcell that may include a third band gap greater than the second band gap. The grading interlayer may not include phosphorus. The solar cells may also include a third solar subcell disposed over the interlayer that is lattice mismatched with respect to the second solar subcell. The third solar subcell may have a fourth band gap smaller than the third band gap.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: September 17, 2013
    Assignee: Emcore Solar Power
    Inventors: Arthur Cornfeld, Mark A. Stan
  • Patent number: 8431815
    Abstract: Photovoltaic devices and methods of making photovoltaic devices comprising at least one compositionally graded photoactive layer, said method comprising providing a substrate; growing onto the substrate a uniform intrinsic photoactive layer having one surface disposed upon the substrate and an opposing second surface, said intrinsic photoactive layer consisting essentially of In1-xAxN,; wherein: i. 0?x?1; ii. A is gallium, aluminum, or combinations thereof; and iii. x is at least 0 on one surface of the intrinsic photoactive layer and is compositionally graded throughout the layer to reach a value of 1 or less on the opposing second surface of the layer; wherein said intrinsic photoactive layer is isothermally grown by means of energetic neutral atom beam lithography and epitaxy at a temperature of 600° C. or less using neutral nitrogen atoms having a kinetic energy of from about 1.0 eV to about 5.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: April 30, 2013
    Assignee: Los Alamos National Security, LLC
    Inventors: Mark A. Hoffbauer, Todd L. Williamson
  • Patent number: 8415559
    Abstract: Precursor layers and methods of forming Group IBIIIAVIA solar cell absorbers with bandgap grading using such precursor layers are described. The Group IBIIIAVIA absorber includes a top surface with a Ga/(Ga+In) molar ratio in the range of 0.1-0.3. The Group IBIIIAVIA solar cell absorber is formed by reacting the layers of a multilayer material structure which includes a metallic film including Cu, In and Ga formed on a base, a layer of Se formed on the metallic film, and a second metallic layer substantially including Ga formed on the layer of Se.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: April 9, 2013
    Assignee: SoloPower, Inc.
    Inventor: Bulent M. Basol
  • Patent number: 8334450
    Abstract: A Seebeck solar cell device is disclosed, combining both photovoltaic and thermoelectric techniques. The device may be formed using, for example, a conventional photovoltaic cell formed from a doped silicon wafer. The material used to form conductors to the front and rear regions of the cell are chosen for their thermoelectric characteristics, including the sign, or polarity, of their Seebeck coefficients. The distal portion of each conductor is insulated from the solar and waste heat and, in some embodiments, is also coupled to a cooling mechanism. Multiple such devices can be connected in series or parallel.
    Type: Grant
    Filed: September 4, 2006
    Date of Patent: December 18, 2012
    Inventor: Joseph A. Micallef