Patents Examined by Thienvu V. Tran
  • Patent number: 11973417
    Abstract: A voltage drop Vzs is calculated based on an output current detection value Iac and a virtual synchronous impedance Zs or a corrected virtual synchronous impedance Zs?, and a value obtained by subtracting the voltage drop Vzs from an internal induced voltage Ef is output as a grid voltage command value Vac*. Zs calculation unit 7 limits an output current phase ? so that the output current phase ? is within an effective range by a phase limiter 12a, and calculates the corrected virtual synchronous impedance Zs? based on a limited output current phase ?, the internal induced voltage Ef, a grid voltage detection value Vac and a current limit value Ilim. Accordingly, in grid interconnection power conversion device that controls a virtual synchronous generator, it is possible to continue operation while suppressing an overcurrent and possess a synchronizing power generated by action or working of a virtual synchronous impedance.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: April 30, 2024
    Assignees: TOKYO ELECTRIC POWER COMPANY HOLDINGS, INCORPORATED, MEIDENSHA CORPORATION
    Inventors: Kenichi Suzuki, Jun Takami, Ryota Samejima, Hideki Noda, Naoto Maeda, Toshiya Inoue, Kazu Shoji
  • Patent number: 11973440
    Abstract: A voltage converter for direct current includes a power converter circuit having a transformer, a switch converter bridge on a primary-side of the transformer, and a full-bridge rectifier on a secondary side of the transformer. The full-bridge rectifier has first and second rectifier branches. A capacitor is asymmetrically connected to the second rectifier branch.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: April 30, 2024
    Assignee: KOSTAL Automobil Elektrik GmbH & Co. KG
    Inventor: Ulrich Lukas
  • Patent number: 11970072
    Abstract: An example of a vehicle electrical system includes a rechargeable energy storage system (RESS) having a first voltage and a power inverter electrically connected to the RESS. The system further includes an electric motor having a plurality of machine windings with each of the machine windings including a polyphase terminal electrically connected to the power inverter. The electric motor further includes a neutral terminal separate from the polyphase terminals. The system further includes an accessory load electrically connected to the power inverter and the neutral terminal of the electric motor, with the accessory load requiring a second voltage that is below the first voltage. A current flows through the machine windings to step down the first voltage to the second voltage. The power inverter is configured to cycle between first and second operational states, such that the power inverter steps down the first voltage to the second voltage.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: April 30, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Rashmi Prasad, Chandra S. Namuduri
  • Patent number: 11973339
    Abstract: A T-breaker is an all-in-one solution for dc microgrid fault protection, power flow control, and power quality improvement. A T-breaker features a modular multilevel “T” structure with integrated energy storage devices. The two horizontal arms of the T-breaker realize fault current breaking, load voltage compensation, and power flow control; and the vertical arm of the T-breaker realizes shunt compensation. The configuration provides excellent voltage scalability and relaxes the requirements on the switching signal synchronization during fault transients. The local energy storage in sub-modules eases the fault energy dissipation requirement placed on the traditionally-adopted surge arrestors. The modular multilevel structure also offers immense control flexibility for all types of targeted functions of the provided T-breaker.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: April 30, 2024
    Assignee: Ohio State Innovation Foundation
    Inventors: Jin Wang, Risha Na, Yue Zhang
  • Patent number: 11973409
    Abstract: The present disclosure relates to a heating system comprising: a heating element for heating a process medium; a DC power converter configured to receive an input direct-current voltage from a power supply and to deliver an output direct-current voltage to the heating element; a sensor arrangement configured to generate a first sensor output signal indicative of a thermodynamic parameter of the process medium or the heating element; and a controller configured to control the DC power converter based on the first sensor output signal.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: April 30, 2024
    Assignee: Chromalox, Inc.
    Inventors: Richard Mark Trussler, Walter Thomas Robinson, Jie Chen
  • Patent number: 11970273
    Abstract: Examples provide a seat assembly, a system including the seat assembly and a method for reducing electromagnetic interference in an aircraft. A seat assembly for an aircraft includes a frame having a base and a support member operatively coupled to the base. A seat is coupled to the base and a first side of the support member. The seat includes a conductive substrate layer configured to absorb electrical charges.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: April 30, 2024
    Assignee: The Boeing Company
    Inventors: Murat Saylik, Joseph A. Bolton
  • Patent number: 11962247
    Abstract: A resonant half-bridge flyback power converter includes: a first transistor and a second transistor which form a half-bridge circuit; a transformer and a resonant capacitor connected in series and coupled to the half-bridge circuit; and a switching control circuit configured to generate a first driving signal and a second driving signal to control the first transistor and the second transistor respectively for switching the transformer to generate an output voltage. The first driving signal is configured to magnetize the transformer. The second driving signal includes at most one pulse between two consecutive pulses of the first driving signal. The switching control circuit generates a skipping cycle period when an output power is lower than a predetermined threshold. A resonant pulse of the second driving signal is skipped during the skipping cycle period. The skipping cycle period is increased in response to the decrease of the output power.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: April 16, 2024
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Ta-Yung Yang, Ying-Chieh Su, Yu-Chang Chen
  • Patent number: 11960310
    Abstract: An electronic device includes a power management device configured to supply a plurality of input voltages; a power module configured to generate an output voltage using at least one of the plurality of input voltages, and to output the generated output voltage; and a system load configured to operate by receiving the output voltage, wherein the power module includes: a first power module configured to receive a first input voltage from the power management device, and to generate a first output current using the first input voltage; and a second power module configured to receive a second input voltage from the power management device, and to generate a second output current using the second input voltage based on the first input voltage being lower than a first reference voltage.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: April 16, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dongyeol Lee, Dongwook Suh
  • Patent number: 11960311
    Abstract: A linear voltage regulator with isolated supply current is disclosed. The voltage regulator is configured and controlled such that its output current closely matches its input current (any quiescent current consumed by the regulator is negligible relative to the amount of current passed by the regulator). In certain implementations, the voltage regulator is implemented as an analog component. In other implementations, the voltage regulator includes or cooperates with digital elements, such as an analog-to-digital converter, a digital processing core, or a digital-to-analog converter.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Seth N. Kazarians, Adam S. Trock, Jalal Elidrissi, Fatemeh Delijani
  • Patent number: 11962242
    Abstract: A buck voltage converter is disclosed. The buck voltage generator includes a controller configured to generate one or more pulse width modulation (PWM) signals, and a plurality of serially connected switches configured to receive the PWM signals and to generate an output voltage signal at an output terminal based on the received PWM signals. The output voltage signal has an average voltage corresponding with a duty cycle of the PWM signals, a first switch of the plurality of serially connected switches has a first breakdown voltage and a second switch of the plurality of serially connected switches has a second breakdown voltage, and the first breakdown voltage is less than the second breakdown voltage.
    Type: Grant
    Filed: April 21, 2023
    Date of Patent: April 16, 2024
    Assignee: EMPOWER SEMICONDUCTOR, INC.
    Inventor: Timothy Alan Phillips
  • Patent number: 11962246
    Abstract: The present disclosure provides a power supply control device and a flyback converter. The power supply control device includes: a comparator, comparing a current sensing signal generated by IN conversion of a primary side current flowing in the primary winding with a threshold voltage; a switching controller, turning off a switching element according to a comparing result of the current sensing signal and the threshold voltage by the comparator; an external terminal, connectable to a connection node of an external resistor connected in series between one end of the auxiliary winding and an application end of a ground potential; a current detector, detecting a terminal current flowing through the external terminal; and a threshold voltage corrector, correcting the threshold voltage based on a current detection signal of the current detector.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: April 16, 2024
    Assignee: Rohm Co., Ltd.
    Inventor: Hiroki Kikuchi
  • Patent number: 11955897
    Abstract: Resonant DC-DC converter control circuitry includes a feedback input, a differential integrator, a resonant voltage input, a first comparator, and a second comparator. The differential integrator includes a first input, a second input, a first output, and a second output. The first input is coupled to the feedback input. The second input is coupled to a ground terminal. The first comparator includes a first input coupled to the resonant voltage input, and a second input coupled to the first output of the differential integrator. The second comparator includes a first input coupled to the resonant voltage input, and a second input coupled to the second output of the differential integrator.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: April 9, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rosario Stracquadaini, Salvatore Giombanco
  • Patent number: 11953926
    Abstract: Voltage regulation schemes for powering multiple circuit blocks are disclosed. In certain embodiments, a front end system includes a reference voltage circuit that receives power from a power supply voltage and generates a reference voltage, a group of circuit blocks each selectively enabled by a corresponding one of a group of enable signals, and a programmable voltage regulator that generates a programmable regulated voltage based on the reference voltage and provides the programmable regulated voltage to the circuit blocks. The programmable regulated voltage has a voltage level that changes based on a selection of the circuit blocks that are enabled by the enable signals.
    Type: Grant
    Filed: June 16, 2022
    Date of Patent: April 9, 2024
    Assignee: Skyworks Solutions, Inc.
    Inventors: Bang Li Liang, Guillaume Alexandre Blin, Thomas Obkircher
  • Patent number: 11955901
    Abstract: A switching device is provided. The apparatus includes a switching circuit and a noise filter. The switching circuit is capable of switching a connection destination of a first power conversion circuit other than a second power conversion circuit among the plurality of power conversion circuits between a phase corresponding to the first power conversion circuit and a certain phase of the external power supply. The second power conversion circuit corresponds to the certain phase of the external power supply. In the noise filter, a capacitor is provided on a side of the multiple-phase AC supply of the switching circuit.
    Type: Grant
    Filed: February 24, 2023
    Date of Patent: April 9, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Shoichi Hara
  • Patent number: 11953927
    Abstract: The present disclosure provides a bias generating device and a method for generating bias. A bias generating device includes a first diode-connected transistor pair connected to receive a first voltage; a second diode-connected transistor pair connected to receive a second voltage; and a first transistor pair connected to the first diode-connected transistor pair and the second diode-connected transistor pair. The first transistor pair is configured to generate a third voltage in response to the first voltage and the second voltage.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Perng-Fei Yuh, Yoshitaka Yamauchi, Yih Wang
  • Patent number: 11955953
    Abstract: The invention relates to a protection for a semi-conductor switch against over voltages. A capacitive element is provided on an inlet connection of the semi-conductor switch. The load amount, which flows into said capacitive element, is integrated in order to trigger a protection function when a threshold value is exceeded.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: April 9, 2024
    Assignee: Robert Bosch GmbH
    Inventors: Peter Sinn, Tim Bruckhaus, Tobias Richter
  • Patent number: 11955957
    Abstract: In accordance with an embodiment, a circuit for driving an electronic switch includes a control circuit configured to trigger a switch-on and a switch-off of the electronic switch in accordance with an input signal, wherein the control circuit is further configured to trigger the switch-off of the electronic switch in response to an under-voltage signal signaling an under-voltage state; and an under-voltage detection circuit configured to signal the under-voltage state when a supply voltage received at a supply node is below an under-voltage threshold value, wherein the under-voltage threshold value depends on a load current passing through the electronic switch.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: April 9, 2024
    Assignee: Infineon Technologies AG
    Inventors: Christian Djelassi-Tscheck, Michael Asam, Mirko Bernardoni, David Jacquinod, Andre Mourrier, Mario Tripolt
  • Patent number: 11955904
    Abstract: In first power transmission in which power is transmitted from a first DC power source to a second DC power source, a control circuit performs on/off drive control of a positive electrode-side switching element and a negative electrode-side switching element in a first bridge circuit and a second bridge circuit and stops on/off drive of a positive electrode-side switching element and a negative electrode-side switching element in a third bridge. For a positive electrode-side switching element and a negative electrode-side switching element of a fourth bridge circuit, when a first power transmission amount by the first power transmission is greater than a predetermined first reference value, the control circuit performs on/off drive control, whereas when the first power transmission amount is smaller than the first reference value, the control circuit stops on/off drive.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: April 9, 2024
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yuki Itogawa, Yusuke Higaki
  • Patent number: 11949228
    Abstract: A multi-stage surge protection device protects against complex, time-variant voltage transients, including those resulting from a high-altitude nuclear electromagnetic pulse or a solar coronal mass ejection. The transient voltage suppressor limits the let-through voltage to a clamping level and provides indication to the crowbar circuit when it is no longer able to do so. Once the clamping level is no longer able to be maintained, the crowbar circuit draws enough current to trip an upstream protective device, such as a breaker or fuse. A low-pass filter can be added to significantly lower the let-through voltage of the device for short-duration pulses, and help to spread the energy to more effectively utilize the transient voltage suppressor.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: April 2, 2024
    Assignee: Faraday Defense Corporation
    Inventor: Arthur Thomas Bradley
  • Patent number: 11949340
    Abstract: A conversion device includes a primary side circuit, a secondary side circuit, a transformer, and a control circuit. The primary side circuit includes a primary side switch and is configured to receive an input voltage. The secondary side circuit outputs an output voltage to a load. The transformer comprises a primary winding and a secondary winding, the primary winding is electrically coupled to the primary side circuit and the secondary winding electrically coupled to the secondary side circuit. The control circuit is configured to control a peak value of the current of the primary side switch, to be limited in a band range.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: April 2, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Hai-Bin Song, Qi Fu, Jian Zhou, Dao-Fei Xu, Jin-Fa Zhang