Abstract: A bone implant is disclosed. The implant comprises a body having a bone contact surface and an articulation surface. A first flange extends longitudinally from the bone contact surface. The flange defines a first screw hole configured to receive a targeted screw therethrough. The targeted screw couples the implant to a bone.
Abstract: A prosthetic heart valve including a stent frame and a valve structure. The valve structure is disposed within a lumen of the stent frame. The stent frame is configured to self-expand from a compressed condition for transluminal delivery. The stent frame has a lattice structure forming a tubular shape defining a circumference and a plurality of closed cells arranged to define a band exhibiting a variable radial stiffness. The prosthesis can be deployed such that the band applies a minimal force on to anatomical locations relating to the heart's conductive pathways. A region of the band otherwise having low radial stiffness is located at or over a conductive pathway upon final implant.
Abstract: The invention relates to the field of ophthalmic systems and procedures. In particular, the invention relates to the determination of the post-operative position of an intraocular lens (termed “IOL”) in an eye of a patient undergoing lens replacement surgery, which involves determining the position of the existing crystalline lens in the pre-operative eye of the patient and using that information and a single numerical constant to predict the post-operative intraocular lens position. Related methods, and computer programs for performing the methods of the invention, are also disclosed.
Abstract: The invention is directed to producing a shaped cartilage matrix isolated from a human or animal where the cartilage has been crafted to facilitate disinfection, cleaning, devitalization, recellularization, and/or integration after implantation. The invention relates to a process for repairing a cartilage defect and implantation of a cartilage graft into a human or animal by crafting the cartilage matrix into individual grafts, disinfecting and cleaning the cartilage graft, applying a pretreatment solution to the cartilage graft, removing cellular debris using an extracting solution to produce a devitalized cartilage graft, implanting the cartilage graft into the cartilage defect with or without an insertion device, and sealing the implanted cartilage graft with recipient tissue. The devitalized cartilage graft is optionally recellularized in vitro, in vivo, or in situ with viable cells to render the tissue vital before or after the implantation.
Type:
Grant
Filed:
July 16, 2007
Date of Patent:
August 29, 2017
Assignee:
Lifenet Health
Inventors:
Silvia S. Chen, Xiaofei Qin, Jingsong Chen, Lloyd Wolfinbarger, Jr.
Abstract: A prosthetic valve assembly for implantation in a patient's circulatory system includes a stent, a valve member coupled to the stent and defining a preferred landing zone relative to anatomical structures in the patient's circulatory system, and at least one marker positioned in a predetermined relationship relative to the landing zone of the valve member, the marker being visually distinguishable from the stent using an imaging technique. By observing the marker, the prosthetic valve assembly may be implanted in the patient so that certain ones of the anatomical structures lie within the landing zone.
Type:
Grant
Filed:
February 21, 2014
Date of Patent:
August 29, 2017
Assignee:
St. Jude Medical, Cardiology Division, Inc.
Inventors:
Peter N. Braido, Gary W. Geiger, Thomas Mark Benson, Steven Frederick Anderl, Aditee Kurane
Abstract: A medical apparatus positionable in a cavity of a bodily organ (e.g., a heart) may constrict a bodily orifice (e.g., a mitral valve). The medical apparatus may include tissue anchors that are implanted in the annulus of the orifice. The tissue anchors may be guided into position by an intravascularly or percutaneously deployed anchor guiding frame. Constriction of the orifice may be accomplished by cinching a flexible cable attached to implanted tissue anchors. The medical device may be used to approximate the septal and lateral (clinically referred to as anterior and posterior) annulus of the mitral valve in order to move the posterior leaflet anteriorly and the anterior leaflet posteriorly and thereby improve leaflet coaptation and eliminate mitral regurgitation.
Type:
Grant
Filed:
October 6, 2010
Date of Patent:
August 29, 2017
Assignee:
KARDIUM INC.
Inventors:
Jon Dahlgren, Doug Goertzen, Daniel Gelbart
Abstract: The invention relates to a prosthetic heart valve (100) for an endoprosthesis (1) used in the treatment of a stenotic cardiac valve and/or a cardiac valve insufficiency. The prosthetic heart valve (100) comprises of a plurality of leaflets (102), which consist of a natural and/or synthetic material and have a first opened position for opening the heart chamber and a second closed position for closing the heart chamber, the leaflets (102) being able to switch between their first and second position in response to the blood flow through the heart.
Type:
Grant
Filed:
May 24, 2011
Date of Patent:
August 29, 2017
Assignee:
JENAVALVE TECHNOLOGY, INC.
Inventors:
Michael J. Girard, Randy Lane, Arnulf Mayer
Abstract: Treatments of coronary heart disease including the effect of endothelial shear stress (ESS) on neointimal formation following a bioresorbable vascular scaffold implantation are disclosed.
Abstract: A vascular device having a plurality of struts having a distal portion and a proximal portion. The distal portion of the struts are retained in a converged position. The struts diverge radially outwardly. A plurality of vessel penetrating members extend from the proximal portion of the struts for engaging the internal wall of the vessel, wherein release of the retention of the distal portions of the struts causes the distal portions to move outwardly away from the longitudinal axis and the proximal portions of the struts to move inwardly toward the longitudinal axis such that the vessel engaging members pull the internal wall of the vessel radially inwardly.
Abstract: Systems and methods are provided for supporting an arm of a user using a harness configured to be worn on a body of a user; and an arm support coupled to the harness configured to support an arm of the user, the arm support configured to accommodate movement of the arm while following the movement without substantially interfering with the movement of the user's arm. One or more compensation elements may be coupled to the arm support to apply an offset force to at least partially offset a gravitational force acting on the arm as the user moves and the arm support follows the movement of the user's arm, the one or more compensation elements providing a force profile that varies the offset force based on an orientation of the arm support.
Abstract: Described embodiments are directed toward prosthetic heart valve leaflets of particular shapes that control bending character. In accordance with an embodiment, a prosthetic heart valve comprises a leaflet frame having a generally tubular shape with attached film. The leaflet frame defines a plurality of leaflet windows. The film defines at least one leaflet extending from each of the leaflet windows. Each leaflet attachment zone on the leaflet frame has substantially the shape of an isosceles trapezoid having two leaflet sides, a leaflet base and a leaflet free edge opposite the leaflet base. The two leaflet sides diverge from the leaflet base, wherein the leaflet base is substantially flat.
Type:
Grant
Filed:
December 18, 2013
Date of Patent:
August 22, 2017
Assignee:
W. L. Gore & Associates, Inc.
Inventors:
William C. Bruchman, Daniel A. Crawford, Logan R. Hagaman, Cody L. Hartman
Abstract: An implantable device system includes an implantable device, such as an annuloplasty ring, for controlling at least a shape and/or size of a heart valve annulus. The implantable device includes an arcuate body and an adjustment system configured to adjust the shape and/or size of the arcuate body. An adjustment tool is configured to be coupled to the adjustment system so that the adjustment tool can be used to activate and control adjustment of the arcuate body. A sensor system is configured to be coupled to the implantable device. The sensor system includes a first sensor configured to measure physiological data at an inflow portion of the valve annulus when the implantable device is implanted into the valve annulus, and a second sensor configured to measure physiological data at an outflow portion of the valve annulus when the implantable device is implanted into the valve annulus.
Type:
Grant
Filed:
August 13, 2015
Date of Patent:
August 22, 2017
Assignee:
St. Jude Medical, Cardiology Division, Inc.
Inventors:
Peter N. Braido, Chad Joshua Green, Neelakantan Saikrishnan, Mina S. Fahim
Abstract: A bone joint repair and replacement assembly. A first portion comprising a bone plate is configured to attach to a distal or proximal end of a bone proximate the joint, generally coaxially with an axis defined by the bone. A second portion comprising an articular surface is configured to attach to the first portion, generally normal with respect to the axis, and inserted into the joint. Although versions of the assembly can be configured for use with several different pivotal joints, the invention is particularly suitable for full or partial replacement of an elbow, wherein the articular surface is pivotally attached to the first portion. Another embodiment of the invention is provided to repair a fractured bone head proximate the joint, and still another embodiment of the invention is provided to repair rotator cuff-related shoulder injuries.
Abstract: A prosthesis can comprise an expandable frame, a plurality of distal anchors and a plurality of proximal anchors. The anchors can extend outwardly from the frame. The frame can be configured to radially expand and contract for deployment within a body cavity. The frame and anchors can have one of many different shapes and configurations. For example, when the frame is in an expanded configuration, the proximal anchors can extend a significant distance away from the exterior of the frame, such as a length equal to or greater than about one half the diameter of the frame. As another example, the anchors can have looped ends.
Type:
Grant
Filed:
March 5, 2014
Date of Patent:
August 15, 2017
Assignee:
Edwards Lifesciences CardiAQ LLC
Inventors:
J. Brent Ratz, Arshad Quadri, Luca Pesce
Abstract: An apparatus and method for inserting prosthesis implants into a patient pocket. The apparatus includes a universal bellows, prosthesis, and a retractor. The apparatus prevents infection; eases insertion and placement; and reduces complications. In use, the retractor anchors the universal bellows to the patient while allowing the bellows to be manipulated to force the prosthesis into a surgical pocket of a patient.
Abstract: A prosthetic device includes a prosthesis wall, at least one display carried by the prosthesis wall in spaced-apart relationship to the at least one display and interfacing with the at least one display, the control module adapted to present at least one image on the at least one display.
Abstract: An implantable orthopedic knee prosthesis includes a component that is configured to be coupled to a surgically-prepared bone. A fixation side of the component includes a fixation surface that has an angled cement pocket formed therein.
Type:
Grant
Filed:
September 10, 2014
Date of Patent:
August 8, 2017
Assignee:
DEPUY IRELAND UNLIMITED COMPANY
Inventors:
Christel M. Wagner, Joseph G. Wyss, David S. Barrett
Abstract: An introducer for deploying an implantable medical device such as a stent (60), stent graft (80) or other similar device is provided with an outer sheath (132,232) which is provided with a series of internally longitudinally extending channels (136. 236) and interdigitating protrusions (134, 234) extending therein. At least on stent ring (0) of the medical device is provided with one or more barbs (104) which point radially outwardly of the device, including when this is compressed onto the introducer. The barbs (104) lie within the channels (136, 236) which the remainder of the medical device is retained in its compressed form by the elongate protrusions (134, 234). The channels (136, 236) allow for the provision of relatively stiff barbs (104). The barbs (104) can be better suited to ensuring the correct placement of the medical device than flexible barb arrangements.
Abstract: A prosthetic or orthotic device includes a body configured to support at least a portion of a human limb of a user wearing the prosthetic or orthotic device. The device can also include a shock absorption member coupled to the body. The shock absorption member includes one or more magnetorheological elastomer (MRE) springs disposed between a first portion of the body and a second portion of the body. The one or more MRE springs are selectively actuatable to vary a stiffness of the shock absorption member via the application of a magnetic flux, thereby adjusting a stiffness of the body of the prosthetic or orthotic device to a level corresponding to an activity level of the user.
Type:
Grant
Filed:
May 18, 2015
Date of Patent:
August 8, 2017
Assignee:
Össur hf
Inventors:
Freygardur Thorsteinsson, Ivar Gudmundsson, Christophe Lecomte
Abstract: This orthopedic implant includes a polymer substrate with an outer surface intended to be secured to a bone tissue. The outer surface is covered with metal particles including titanium. The particles include large primary particles and small secondary particles. The primary particles and the secondary particles are evenly distributed over the outer surface.