Patents Examined by Thomas P. Noland
  • Patent number: 7982764
    Abstract: A monitoring apparatus for sensing conditions associated with a package handling system. The monitoring apparatus includes a test package configured for being handled by the package handling system with non-test packages handled by the package handling system. The test package has a housing defining a test package interior and has at least one sensor positioned within the interior for sensing conditions associated with the package handling system. The sensor produces an output signal corresponding to the conditions that it senses. The test package further includes a support positioned within the test package interior and connecting the sensor to the housing so that the sensor is directed generally toward an outside of the test package for sensing conditions associated with the package handling system.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: July 19, 2011
    Assignee: United Parcel Service of America, Inc.
    Inventor: Nagesh Kadaba
  • Patent number: 7980147
    Abstract: A novel multi-gas passive sampler is described, whereby different collection media are packed into one passive sampler to collect a variety of air pollutants (or groups of air pollutants) at the same time. By comparison with known commercially available passive samplers—in which only a single collection medium is used to collect a single air pollutant of or group of air pollutants—the MGPS is more cost effective, convenient to use and more environment-friendly.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: July 19, 2011
    Inventor: Hongmao Tang
  • Patent number: 7966899
    Abstract: A system for sampling emission products from an emissions source, for example combustion engines including gasoline, diesel and natural gas engines, for subsequent measurement and analysis of the emission products. The system includes a dilution apparatus, a residence time chamber, a plurality of sampling probes within the residence time chamber, and a plurality of sampling trains connected to the sampling probes to take simultaneous representative emission samples for subsequent analysis. The system has particular use in quantifying chemical and toxic trace species from emissions sources. The results of the analysis can be used to formulate decisions on changes in engine design strategy, and can be used to determine the effectiveness of aftertreatment systems on the emissions source.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: June 28, 2011
    Assignee: Cummins Filtration IP, Inc.
    Inventors: Z. Gerald Liu, Thaddeus Alan Swor, Joseph Charles Lincoln, Denise Christine Ford
  • Patent number: 7966859
    Abstract: A biosensor has an underfill detection system that determines whether a sample of a biological fluid is large enough for an analysis of one or more analytes. The underfill detection system applies an excitation signal to the sample, which generates an output signal in response to the excitation signal. The underfill detection system switches the amplitude of the excitation signal. The transition of the excitation signal to a different amplitude changes the output signal when the sample is not large enough for an accurate and/or precise analysis. The underfill detection system measures and compares the output signal with one or more underfill thresholds to determine whether an underfill condition exists.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: June 28, 2011
    Assignee: Bayer HealthCare LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson
  • Patent number: 7958769
    Abstract: The present invention relates to a method of detecting non-linear operation of a measuring device comprising an array of transducers and at least one receiver channel portion. The method comprises receiving measured signals through transducers of the array, processing the measured signals from the transducers through the receiver channel portion, combining the processed measured signals to produce a combined measurement signal, and detecting non-linearity of the combined measurement signal and non-linear operation of the measuring device by detecting saturation of the receiver channel portion. In one embodiment, the receiver channel portion comprises an analog-to-digital converter, a threshold is assigned to a digital output of the analog-to-digital converter, and saturation of the receiver channel portion is detected when the digital output of the analog-to-digital converter oversteps the assigned threshold. In one application of the invention, the measuring device is a non-destructive testing device.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: June 14, 2011
    Assignee: Olympus NDT
    Inventors: Pierre Langlois, Michael Drummy
  • Patent number: 7958768
    Abstract: Embodiments of the present invention are directed toward pressure controllers and calibrators for setting or measuring pressures in test devices. In one embodiment, the pressure controller contains a dual reference pressure controller. The dual reference pressure controller is operable to maintain two different pressures relative to a reference pressure. The first pressure being a relatively fixed amount greater than the reference pressure and the second pressure being a relatively fixed amount less than the reference pressure.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: June 14, 2011
    Assignee: Fluke Corporation
    Inventors: Pierre R. Delajoud, Robert B. Haines, Thomas A. Lohkamp
  • Patent number: 7958791
    Abstract: A method for operating a cryostorage device (100), especially for biological samples, is described which comprises a sample carrier (10) to receive at least one sample (11) and a data storage (20), wherein data are inductively transmitted from the data storage device (20) into a wireless transmission channel (40) and/or conversely using a resonant circuit (30) connected to the data storage device (20).
    Type: Grant
    Filed: January 22, 2003
    Date of Patent: June 14, 2011
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forshung e.V.
    Inventors: Heiko Zimmermann, Günter R. Fuhr, Rolf Hagedorn
  • Patent number: 7958566
    Abstract: Disclosed is an atomic force microscope (AFM) probe for use in an AFM, and more particularly, an AFM probe suitable for testing the topography and mechanical properties of a microstructure having a size on the order of micrometers or nanometers. To this end, an AFM probe according to the present invention comprises an elastically deformable frame having a fixed end and a movable end on one axis; an AFM tip supported by the movable end to be movable against a test sample in a direction of the axis; and a stopper provided on an inner surface of the frame to control a movement of the AFM tip within a predetermined range.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: June 7, 2011
    Assignee: Korea Institute of Machinery & Materials
    Inventors: Hak-Joo Lee, Seung Min Hyun, Jae Hyun Kim, Jung Yup Kim, Seung Woo Han, Jung Min Park, Byung Ik Choi
  • Patent number: 7954391
    Abstract: The disclosure relates to a method for testing the functionality of armatures, e.g., of safety armatures, in process control systems which are assigned a test device for implementing partial stroke testing and which are connected to a control device, which brings about actuation, in accordance with regulations, of the safety armature in an emergency. Prior to the start of the implementation of the partial stroke testing, a request signal is transmitted from the test device to the control device which is answered by the control device with an enable signal, the enable signal being issued as a function of the current process sequence at the armature.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: June 7, 2011
    Assignee: ABB AG
    Inventors: Thomas Kleegrewe, Andreas Stelter, Martin Dahl, Andreas Wahlmann, Heiko Kresse
  • Patent number: 7954379
    Abstract: The invention is directed toward a new method for estimating and imaging the spatial and temporal mechanical behavior of materials in responses to a mechanical stimulus. This method is designed to work in inherently noisy applications, such as the imaging of the time-dependent mechanical behavior of biological tissues in vivo and using a preferred hand-held configuration of scanning.
    Type: Grant
    Filed: July 11, 2009
    Date of Patent: June 7, 2011
    Assignee: The Board of Regents of the University of Texas System
    Inventors: Raffaella Righetti, Johathan Ophir
  • Patent number: 7950265
    Abstract: A system for preventing overflow of a toilet includes a sensor, a processor and an actuator. The sensor senses a parameter caused by fluid dynamics within the toilet during a flush cycle. The parameter may involve vibration, sound, pressure, fluid flow rate or other detectible characteristics of the toilet. The processor uses information regarding the parameter that is gathered by the sensor to evaluate the condition of the flush cycle to determine if an impeded flush condition exists. In the event of an impeded flush condition, the processor directs the actuator to close a valve, which may be the toilet flapper valve in some embodiments. Also disclosed are methods for preventing toilet overflow, detecting an impeded flush condition and calibrating the system.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: May 31, 2011
    Assignee: Limit, Inc.
    Inventors: Kevin Bowcutt, Ahmed Shishegar, Matthew Ibarra, Daniel L. Corbin, Dennis Repp, Robert M. Connell, Oscar Dufau, Gregory Blake, Sam Iravantchi
  • Patent number: 7946156
    Abstract: Glide test systems and associated methods are described. A glide test system includes a glide test head that is flown over the surface of a recording disk to detect asperities on the recording disk. The glide test head includes a detection pad on the trailing end of the head. Heating elements are fabricated proximate to the detection pad. The heating elements are independently controllable to control the amount of protrusion of different regions of the detection pad. The heating elements thus provide a way to substantially flatten the detection surface of the detection pad, and compensate for an uneven topography on a detection surface.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: May 24, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Shanlin Duan, Jizhong He, Bruno Marchon, Ullal V. Nayak
  • Patent number: 7946050
    Abstract: The present invention discloses a three-dimensional microprobe array assembly structure, wherein spacers are used in assembling edge-type microprobe arrays to form a three-dimensional structure, and the spacers reveal conductive pads of the edge-type microprobe arrays to benefit wire bonding. The present invention detects depths and angles and thus increases detection reliability. Besides, in the present invention, the related IC is integrated with the spacer to achieve circuit integration and reduce cost.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: May 24, 2011
    Assignee: National Chiao Tung University
    Inventors: Jin-Chern Chiou, Chih-Wei Chang
  • Patent number: 7942060
    Abstract: Provided herein are devices and methods for mounting variously configured medical imaging probes for imaging applications. In one aspect, a holding device allows for interfacing/holding most conventional ultrasound probes such that the probes may be attached to a positioning device using a common interface. As ultrasound probes come in various sizes and lengths, the device may adjust to different lengths, widths and shapes of different probes. Hence, the device may work in a substantially universal manner while securely holding probes with little wobble or other problems.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: May 17, 2011
    Assignee: Eigen, Inc.
    Inventors: Jasjit Suri, Kanwar Suri, Animesh Khemka, Dinesh Kumar
  • Patent number: 7938004
    Abstract: Disclosed herein are systems and methods of angular rate and position measurement that combine a small footprint with hardening and isolation technologies that allow it to function in acceleration, angular rate, noise and vibration environments that cause other gyroscopes to either fail or to produce erroneous outputs. An example embodiment contains a triad of accelerometers, a triad of gyroscopes, analog and digital ancillary electronics and a processor housed within a housing which is also filled with vibration reducing encapsulating compound. The disclosed systems and methods of angular rate and position measurement are capable of measuring and correcting internal errors and perturbations caused by the longitudinal and angular accelerations and temperature excursions of aerospace vehicles, isolating the gyroscope elements from the effects of acoustic noise and vibration, and accurately measuring the relatively small pitch and yaw oscillations of the vehicle in its flight path trajectory.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: May 10, 2011
    Inventors: James P. Brunsch, Jr., David A. Bittle, Julian L. Cothran, Gary T. Jimmerson, Russell S. Garner
  • Patent number: 7939031
    Abstract: A pipette nozzle is provided for use on a movable arm on an automated pipette machine. The pipette nozzle includes a body defining a passage therethrough. At least two seating surfaces are provided on the body, including a first seating surface and a second seating surface. The first seating surface is configured to receive and sealingly mate with a first size of pipette tip in a manner such that the first end of the passage is in fluid communication with the first size of pipette tip. The second seating surface is configured to receive and sealingly mate with a second size of pipette tip in a manner such that the first end of the passage is in fluid communication with the second size of pipette tip. The seating surfaces are frustoconical outer surfaces. The pipette nozzle may be further configured to sealingly mate with and removably receive a third pipette tip having a third diameter different from the first diameter and the second diameter.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: May 10, 2011
    Assignee: Stemcell Technologies, Inc.
    Inventors: Andrew Angus, Adam Donath, Richard Grant
  • Patent number: 7938030
    Abstract: An analytical device according to the present invention comprises a liquid accommodating chamber 9 for accommodating a sample solution of a quantity required for analyzing; a volume measuring chamber 10 connected to the liquid accommodating chamber 9 with a connecting path 13 and disposed in the exterior of the liquid accommodating chamber 9 in a radial direction; an overflowing chamber 11 connected to the volume measuring chamber 10 for accommodating an excessive quantity of the sample solution; and a measuring cell 12 for transferring and measuring the sample solution measured in the volume measuring chamber 10; wherein an overflowing port 14 of the volume measuring chamber 10 is connected to a flow-in port 16 of the overflowing chamber 11 by a capillary path 17.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: May 10, 2011
    Assignee: Panasonic Corporation
    Inventor: Hiroshi Saiki
  • Patent number: 7940297
    Abstract: An inspection system configured for “no-blow” use in a pressurized gas pipeline includes a push rod wound around a spool for convenient deployment and portability. A camera disposed on one end of the push rod is configured to relay images back to a monitor. A motor is configured for remote actuation by an operator, and provides for self-propelled movement of the camera in the pipeline. An entry tube is configured for sealed entry into the pipeline to facilitate entry of the camera and push rod. A guide shoe at the end of the entry tube provides a smooth transition for the camera and push rod as it leaves the entry tube and enters the pipeline. An automatically deployable and retractable positioning system is used to keep the camera away from an interior surface of the pipeline, and in the case of smaller pipelines, centers the camera within the pipeline.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: May 10, 2011
    Assignee: ULC Robotics, Inc.
    Inventors: G. Gregory Penza, George Lohr, Hermann Herrlich
  • Patent number: 7934434
    Abstract: An apparatus and method are provided for collection and analysis of dry powder inhaler products to determine foreign particulate matter found therein. The apparatus includes a collection chamber that communicates directly with the mouthpiece of a dry powder inhaler device. The collection chamber is used to both collect product samples, as well as to mix the samples with a diluent that places the active pharmaceutical components and excipients in solution, while the foreign particulate matter remains suspended. Analysis of a sample is preferably conducted by light obscuration wherein a probe is inserted directly within the collection chamber of the apparatus. An integral magnetic stir-bar incorporated within the apparatus eliminates the need to transfer the collected sample to a secondary vessel for mixing or analysis.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: May 3, 2011
    Assignee: Pharmaceutical Product Development, Inc.
    Inventors: Christopher M. Shelton, Timothy J. Stephens
  • Patent number: 7928343
    Abstract: The present invention provides microcantilever hotplate devices which incorporate temperature compensating strain sensors. The microcantilever hotplate devices of the present invention comprise microcantilevers having temperature compensating strain sensors and resistive heaters. The present invention also provides methods for using a microcantilever hotplate for temperature compensated surface stress measurements, chemical/biochemical sensing, measuring various properties of compounds adhered to the microcantilever hotplate surface, or for temperature compensated deflection measurements.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: April 19, 2011
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: William P. King, Jungchul Lee, Fabian T. Goericke