Patents Examined by Thuan D. Dang
  • Patent number: 10414702
    Abstract: Process for separating xylenes starting from a feed comprising cuts of isomers of aromatic hydrocarbons containing 8 carbon atoms, in a simulated moving bed, by selective adsorption of a xylene isomer in the presence of a desorbent, by means of particles of agglomerated zeolitic adsorbent based on zeolite crystals with a number-average diameter less than or equal to 1.2 ?m, wherein the number-average diameter of said particles of adsorbent is between 150 ?m and 500 ?m and the mechanical strength measured by the Shell method series SMS1471-74 adapted for agglomerates with a size below 500 ?m is greater than or equal to 2 MPa.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: September 17, 2019
    Assignees: IFP ENERGIES NOUVELLES, Arkema France
    Inventors: Catherine Laroche, Damien Leinekugel Le Cocq, Philibert LeFlaive, Frederic Augier, Ludivine Bouvier, Cecile Lutz, Sylvie Szendrovics, Quitterie Persillon
  • Patent number: 10399913
    Abstract: In a process for upgrading paraffins and olefins, a first feed comprising C14? olefins is contacted with an oligomerization catalyst in a first reaction zone under conditions effective for oligomerization of olefins to higher molecular weight hydrocarbons. Deactivated catalyst is removed from the first reaction zone at a first temperature and is contacted with an oxygen-containing gas and a hydrocarbon-containing fuel in a regeneration zone to regenerate the catalyst and raise the temperature of the catalyst to a second, higher temperature. A second feed comprising C14? paraffins is contacted with the regenerated catalyst in a second reaction zone to convert at least some of the paraffins in the second feed to a reaction effluent comprising olefins, aromatic hydrocarbons and regenerated catalyst; and the reaction effluent is supplied to the first reaction zone. A system for performing such a process and a product of such a process are also provided.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: September 3, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mohsen N. Harandi, John Dusseault
  • Patent number: 10384991
    Abstract: The presently disclosed subject matter relates to methods and systems for purifying 1,3-butadiene from a C4 hydrocarbon stream. An example method includes introducing a C4 hydrocarbon stream including 1,3-butadiene and acetlyenes to an organic azide in the presence of a catalyst to generate a first stream including triazole, separating triazole from the first stream to produce a second stream including 1,3-butadiene, and distilling 1,3-butadiene from the second stream to produce a purified 1,3-butadiene product stream.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: August 20, 2019
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Kuldeep Wadhwa, Antonio Matarredona, Radu Ignat, Sekhar Mamilla, Christoph Roosen, Alex Londono
  • Patent number: 10350538
    Abstract: In various aspects, methods are provided for hydrogen production while reducing and/or mitigating emissions during various refinery processes that produce syngas, such as power generation. Syngas can be effectively separated to generate high purity carbon dioxide and hydrogen streams, while reducing and/or minimizing the energy required for the separation, and without needing to reduce the temperature of the flue gas. In various aspects, the operating conditions, such as high temperature, mixed metal oxide adsorbents, and cycle variations, for a pressure swing adsorption reactor can be selected to minimize energy penalties while still effectively capturing the CO2 present in syngas.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: July 16, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Narasimhan Sundaram, Hans Thomann, David C. Calabro, Frank Mittricker
  • Patent number: 10351786
    Abstract: Apparatus and processes herein provide for converting hydrocarbon feeds to light olefins and other hydrocarbons. The processes and apparatus include, in some embodiments, feeding a hydrocarbon, a first catalyst and a second catalyst to a reactor, wherein the first catalyst has a smaller average particle size and is less dense than the second catalyst. A first portion of the second catalyst may be recovered as a bottoms product from the reactor, and a cracked hydrocarbon effluent, a second portion of the second catalyst, and the first catalyst may be recovered as an overhead product from the reactor. The second portion of the second catalyst may be separated from the overhead product, providing a first stream comprising the first catalyst and the hydrocarbon effluent and a second stream comprising the separated second catalyst, allowing return of the separated second catalyst in the second stream to the reactor.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: July 16, 2019
    Assignee: Lummus Technology Inc.
    Inventors: Liang Chen, Peter Loezos, Rama Rao Marri, Bryan Tomsula, Jon A. Hood, Hardik Singh, Michael Dorsey, Justin Breckenridge
  • Patent number: 10350537
    Abstract: Methods are provided for the production of nitrogen, hydrogen, and carbon dioxide from an exhaust gas. Exhaust gas from combustion in a fuel rich (or reducing) atmosphere is primarily composed of CO2, CO, N2, H2O, and H2. CO may be converted to CO2 and H2 via the water gas shift reaction. Carbon dioxide may then be effectively separated from nitrogen and hydrogen to produce a carbon dioxide stream and a nitrogen/hydrogen stream. The nitrogen/hydrogen stream may then be effectively separated to produce a high purity nitrogen stream and a high purity hydrogen stream. The process may be done in any order, such as separating the nitrogen first or the carbon dioxide first.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: July 16, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Narasimhan Sundaram, Hans Thomann
  • Patent number: 10343957
    Abstract: Oxidative dehydrogenation is an alternative to the energy extensive steam cracking process presently used for the production of olefins from paraffins, but has not been implemented commercially partially due to the unstable nature of hydrocarbon/oxygen mixtures, and partially due to the cost involved in the construction of new facilities. An oxidative dehydrogenation chemical complex designed to reduce costs by including integration of an oxygen separation module that also addresses safety concerns and reduces emission of greenhouse gases is described.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: July 9, 2019
    Assignee: NOVA Chemical (International) S.A.
    Inventors: Kamal Serhal, Vasily Simanzhenkov, Shahin Goodarznia, David Gent, Mark Williamson
  • Patent number: 10336663
    Abstract: The present invention discloses processes for oligomerizing an olefin feedstock containing C4 to C20 alpha olefins using a catalyst system containing a metallocene compound, an organoaluminum compound, and a suspension of a chemically-treated solid oxide. The liquid medium for the suspension of the chemically-treated solid oxide can be an alpha-olefin oligomer product formed by the oligomerization process.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: July 2, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Graham R. Lief, Eric J. Haschke, Pasquale Iacono
  • Patent number: 10329494
    Abstract: The present disclosure relates to a system and a process for producing biofuel. The system comprises at least one feed tank; a low pressure pump; a high pressure pump; a first heat exchanger; a second heat exchanger; a reaction vessel; a precipitation vessel; a first pressure let-down station; a third heat exchanger; a second pressure let-down station; a gas-liquid separator; and a biofuel separator. The process comprises pressurizing and heating a feed, followed by reforming the pressurized and heated feed to obtain a slurry. The solids are separated from the slurry by precipitation to obtain a mixture comprising biofuel and the non-reformed feed. The mixture is then cooled and de-pressurized, followed by separation of gases and the non-reformed feed to obtain the biofuel. The system and process of the present disclosure can be used to produce biofuel from diverse, easily available and inexpensive starting material.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: June 25, 2019
    Assignee: RELIANCE INDUSTRIES LIMITED
    Inventors: Ramesh Bhujade, Rajaram Shrimant Ghadge, Roshni Krishnarao Bahekar, Somesh Gupta, Nitin Nagwani, Piyush Jain, Nikhlesh Saxena, Pavan Kumar Konakandla
  • Patent number: 10329498
    Abstract: A process is presented for the purification of an olefins feed stream to a benzene alkylation unit. The process removes heavy aromatics in an adsorbent system comprising at least two adsorbent units. The unit passes the olefins feed stream to a first adsorbent unit, while the second adsorbent unit is either in regeneration mode, or standby mode. The process switches the feed stream to the second adsorbent unit and displaces the fluid in the second adsorbent unit, while maintaining the flow of the purified feed stream to the benzene alkylation unit.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: June 25, 2019
  • Patent number: 10322982
    Abstract: The present invention relates to energy saving method and apparatus for preparing styrene and alpha-methylstyrene concurrently, by which economic feasibility may be improved by reusing energy during preparing styrene and alpha-methylstyrene concurrently.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: June 18, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Mi-Kyung Kim, Jae-Ik Lee, Jong-Ku Lee, Jeong-Seok Lee
  • Patent number: 10322366
    Abstract: Wet-type carbon dioxide capturing equipment includes a CO2 absorption tower where CO2 of an exhaust gas reacts with an absorbent, a CO2 stripping tower where CO2 is separated from a rich solution absorbed the CO2 in the CO2 absorption tower, a reboiler for supplying thermal energy to the CO2 stripping tower to separate the CO2 from the rich solution in the CO2 stripping tower, a first heat exchanger for heating the rich solution by exchanging heat between a lean solution having the CO2 separated therefrom in the CO2 stripping tower and the rich solution, a mechanical vapor recompressor (MVR) for compressing a CO2 gas separated in the CO2 stripping tower, and a second heat exchanger for separating a portion of CO2 from the rich solution by heating the rich solution by exchanging heat between the CO2 gas compressed in the MVR and the rich solution passing through the first heat exchanger, in which the rich solution having CO2 that is not separated in the second heat exchanger is input to the CO2 stripping tower
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: June 18, 2019
    Assignee: KEPCO ENGINEERING & CONSTRUCTION COMPANY, INC.
    Inventors: Young Ill Lee, Tea Young Lim, Seong Pill Cho, Eun Kyu Choi, Sung Mun Yoon
  • Patent number: 10300459
    Abstract: A process includes reacting a feed stream containing ethanol and optionally acetaldehyde in a dehydration reactor in the presence of a dehydration catalyst system having a Group 4 or Group 5 metal oxide and a support. The process includes obtaining a product stream containing butadiene from the dehydration reactor. Another process includes reacting a feed stream containing ethanol and optionally acetaldehyde in a dehydration reactor in the presence of a dehydration catalyst system containing a tungsten oxide supported on a zeolite or a tantalum oxide supported on a zeolite. The process includes obtaining a product stream containing butadiene from the dehydration reactor.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: May 28, 2019
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Sivadinarayana Chinta, Kaushik Gandhi
  • Patent number: 10301894
    Abstract: An experimental device of polyphase separation of natural gas hydrate drilling fluid, and method of use thereof, comprising a solid-phase separator, a liquid injection module, a gas injection module and a gas-liquid separator. The solid-phase separator comprises a first filter device and a second filter device, the gas injection module injects gas into the solid-phase separator while the liquid injection module injects liquid into the solid-phase separator, and the gas-liquid separator is communicated with the solid-phase separator through a pressure control valve.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: May 28, 2019
    Assignee: GUANGZHOU INSTITUTE OF ENERGY CONVERSION, CHINESE ACADEMY OF SCIENCES
    Inventors: Xiaosen Li, Yu Zhang, Yi Wang, Gang Li, Ningsheng Huang, Zhaoyang Chen
  • Patent number: 10294173
    Abstract: The present invention relates to the integration of an alkylation unit for use in a hydrocarbon conversion process. More specifically, the present invention relates to the integration of a dehydrogenation unit and an alkylation unit and the placement of different isomerization units located off the deisobutanizer and the debutanizer.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: May 21, 2019
    Assignee: UOP LLC
    Inventors: Charles P. Luebke, Raul Zavala, Christopher D. DiGiulio
  • Patent number: 10294172
    Abstract: Provided here are processes and systems for conversion of alkyl-bridged non-condensed alkyl multi-aromatic compounds to alkyl mono-aromatic compounds. One system includes a hydrodearylation reactor adapted to receive a hydrogen stream and a feed stream and to produce a reactor effluent stream in presence of a catalyst. The feed stream contains one or more of heavy alkyl aromatic compounds and one or more alkyl-bridged non-condensed alkyl multi-aromatic compounds. The reactor effluent stream contains one or more alkyl mono-aromatic compounds. The system also includes a first separator fluidly coupled to the hydrodearylation reactor and adapted to receive the reactor effluent stream and to produce a hydrodearylated gas stream and a hydrodearylated liquid stream. The system also includes a second separator fluidly coupled to the first separator and adapted to receive a portion of the hydrodearylated gas stream and to produce a hydrocarbon liquid stream and a vapor stream rich in hydrogen.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: May 21, 2019
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Bruce Richard Beadle, Vinod Ramaseshan, Rakan Sulaiman Bilaus, Omer R. Koseoglu, Robert P. Hodgkins
  • Patent number: 10294175
    Abstract: Disclosed is a process for the conversion of acyclic C5 feedstock to a product comprising cyclic C5 compounds, such as for example, cyclopentadiene, and catalyst compositions for use in such process. The process comprising the steps of contacting said feedstock and, optionally, hydrogen under acyclic C5 conversion conditions in the presence of a catalyst composition to form said product. The catalyst composition comprising a crystalline aluminosilicate having a constraint index of less than or equal to 5, and a Group 10 metal, and, optionally, a Group 11 metal, in combination with a Group 1 alkali metal and/or a Group 2 alkaline earth metal.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: May 21, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Jeremy W. Bedard, Karl G. Strohmaier, Machteld M. W. Mertens, Robert T. Carr, Jane C. Cheng
  • Patent number: 10286388
    Abstract: A new crystalline aluminosilicate zeolite comprising a MTT framework has been synthesized that has been designated UZM-53. This zeolite is represented by the empirical formula: M+mRrAl1-xExSiyOz where M represents sodium, potassium or a combination of sodium and potassium cations, R is the organic structure directing agent or agents derived from reactants R1 and R2 where R1 is diisopropanolamine and R2 is a chelating diamine, and E is an element selected from the group consisting of gallium, iron, boron and mixtures thereof. Catalysts made from UZM-53 have utility in various hydrocarbon conversion reactions.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: May 14, 2019
    Inventors: Christopher P. Nicholas, Mark A. Miller
  • Patent number: 10287508
    Abstract: Multiple stages of reactors form a bio-reforming reactor that generates chemical grade bio-syngas for any of 1) a methanol synthesis reactor, 2) a Methanol-to-Gasoline reactor train, 3) a high temperature Fischer-Tropsch reactor train, and 4) any combination of these three that use the chemical grade bio-syngas derived from biomass fed into the bio-reforming reactor. A tubular chemical reactor of a second stage has inputs configured to receive chemical feedstock from at least two sources, i) the raw syngas from the reactor output of the first stage via a cyclone, and ii) purge gas containing renewable carbon-based gases that are recycled back via a recycle loop as a chemical feedstock from any of 1) the downstream methanol-synthesis-reactor train, 2) the downstream methanol-to-gasoline reactor train, or 3) purge gas from both trains. The plant produces fuel products with solely 100% biogenic carbon content as well as fuel products with 50-100% biogenic carbon content.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: May 14, 2019
    Assignee: Sundrop Fuels, Inc.
    Inventors: Douglas S. Jack, Renus C. Kelfkens, Steve C. Lythgoe, Wayne W. Simmons
  • Patent number: 10280127
    Abstract: An integrated process and system to generate power and convert acyclic C5 feedstock to non-aromatic, cyclic C5 hydrocarbon. A combustion device, such as a turbine, and reactor tubes containing catalyst compound are disclosed. A process involving contacting acyclic C5 feedstock with catalyst composition and obtaining cyclic C5 hydrocarbon is also disclosed.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: May 7, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Romain O. V. Lemoine