Patents Examined by Tima M. McGuthry-Banks
  • Patent number: 10612111
    Abstract: A method and plant for gold recovery from any gold-bearing ore by low-temperature chlorination, wherein the finely-divided gold-bearing feedstock is chlorinated gaseous chlorine at a temperature of about 245° C. to form a highly volatile chloride compound, which after leaving a reactor is directed to a low-temperature nitrogen plasma unit having a temperature of 900-1100° C., wherein the said compound decomposes and turns into high-purity gold powder, which is cooled with gaseous nitrogen at a cooling reactor's inlet, which is equipped with a water chamber, and collected in a dumping hopper. Some embodiments allow recovery of high-purity 999.9 fine gold using an environmentally friendly, cost effective and inexpensive method implemented on an industrial scale.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: April 7, 2020
    Inventors: Robert Ten, Elena Makhnitskaya
  • Patent number: 10590512
    Abstract: A method for leaching copper from an oxidized copper ore, wherein at least 5% of the copper present in the oxidized copper ore is an oxidized copper compound, the method comprising the method steps of: applying an aqueous solution of a curing agent to the oxidized copper ore to produce a cured ore; forming a leach solution by applying an ammoniacal solution that has an ammonium carbonate content of less than 5 g/L to the cured ore to produce a pregnant leach solution containing copper; and passing the pregnant leach solution to a means for recovering copper.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: March 17, 2020
    Assignee: METALEACH LIMITED
    Inventors: Matthew Leslie Sutcliffe, Garry Mervyn Johnston, Nicholas James Welham
  • Patent number: 10584399
    Abstract: A method for recycling a material may include carrying out a first pass operation. The first pass operation may include preparing an E-waste material and a solid oxide material. The E-waste material may include Fe and Si. The first pass operation may include blending the E-waste material with fluxing agents. The first pass operation may include feeding a furnace with the blended E-waste material and the solid oxide material. The method may include smelting the blended E-waste material and the solid oxide material from the first pass operation to obtain a slag. The slag may include iron oxide and a molten metal. The molten metal may include copper.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: March 10, 2020
    Assignee: BlueOak Arkansas
    Inventors: Robert P. Foster, Steven N. Dixon
  • Patent number: 10577676
    Abstract: A process for recovering chromium from hexavalent chromium-containing wastewater comprises the following steps: (1) extracting hexavalent chromium in wastewater to an organic phase by using an extracting agent, and separating hexavalent chromium from a water phase, so as to acquire a hexavalent chromium-loaded organic phase; (2) reducing the hexavalent chromium-loaded organic phase by using an aqueous solution of an organic reducing agent, reducing hexavalent chromium into trivalent chromium, reversely extracting trivalent chromium into the water phase, and separating the organic phase from the water phase to acquire a solution of the trivalent chromium and a renewable organic phase, wherein the organic reducing agent is one or a mixture of alcohols, aldehydes and carboxylic acids having the carbon atom number ranging 1 to 3; and (3) performing solvent evaporation on the solution of trivalent chromium, catalyzing, and recovering the trivalent chromium.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: March 3, 2020
    Assignee: HUNAN YONKER ENVIRONMENTAL PROTECTION RESEARCH INSTITUTE CO., LTD
    Inventors: Qianfeng He, Leshan Song, Haiyan Yan, Xiongjie Que, Bao Liu, Qunhuan Cai, Jie Liu, Yongge Yao, Biyu Sun
  • Patent number: 10577675
    Abstract: A method and apparatus for processing a material are provided, the material being the upper layer from a metal melting process, the material containing one or more salts, the material containing one or more metals, the salts and/or metals being recycled as a result of the method/apparatus. The method includes feeding the material to a leaching step; obtaining a leachate from the leaching step; feeding the leachate to a drying step or spray drying step; obtaining a solid from the drying step or spray drying step. Off gases from the leaching step are used to provide heat to the drying step. The drying step provides a product well suited to being turned into pellets for reuse.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: March 3, 2020
    Assignee: ALTEK EUROPE LIMITED
    Inventors: Alan Peel, Andrew Gibbs
  • Patent number: 10570480
    Abstract: The invention provides a method for recovering scandium from an acidic solution containing scandium. The method having [a] a precipitation step wherein sodium sulfate is added into the acidic solution containing scandium to obtain a precipitate of a scandium double sulfate; [b] a neutralization step wherein pure water is added to the precipitate of a scandium double sulfate to dissolve the precipitate of a scandium double sulfate therein, and scandium hydroxide is obtained by adding a neutralizing agent into the dissolution liquid; and [c] a re-dissolution step wherein an acid is added to the scandium hydroxide obtained in the neutralization step, so that a scandium dissolution after purification, in which the scandium hydroxide is dissolved, is obtained.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: February 25, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hidemasa Nagai, Keiji Kudo, Shin-ya Matsumoto, Hiroshi Kobayashi, Satoshi Asano
  • Patent number: 10570481
    Abstract: Disclosed in the present application is a copper rotation-suspension smelting process comprising: mixing a flux and/or fume with dried copper-containing mineral powders to form a mixed material, which enters into a smelting furnace through a material channel; allowing a reaction gas to form a swirling flow under an action of a swirler, which enters into the smelting furnace through a Venturi channel under a guidance of a swirling gas channel; replenishing the reaction gas and/or a fuel to the smelting furnace through an auxiliary oxygen channel and an auxiliary fuel channel; subjecting the swirling flow which has been subjected to high-speed expansion through the Venturi channel and enters into the smelting furnace to a contact reaction with the mixed material; separating a melt generated by the reaction which falls into a settling tank into a residue layer and a copper-containing product layer.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: February 25, 2020
    Assignee: YANGGU XIANGGUANG COPPER CO., LTD
    Inventors: Songlin Zhou, Zheling Ge, Zhipu Wang
  • Patent number: 10569315
    Abstract: A treatment method for resource recycling of hexavalent chromium-containing residues is provided. This method comprises steps as follows: 1) adding water to the hexavalent chromium-containing residues and mixing uniformly; 2) adding mineralizers to a solution obtained in step 1) and stirring sufficiently to obtain a mixed liquid; and the mineralizers are sodium chlorate, sodium perchlorate and hydrochloric acid; 3) treating the mixed liquid by a hydrothermal method or direct heating; 4) after the heating treatment, naturally cooling a solid-liquid mixture to room temperature for holding; 5) separating solid residues and a chromium-containing supernatant, and washing filtered residues with water and then drying; and 6) recycling a chromium-containing solution for returning to a work section, or for a treatment of recycling chromium.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: February 25, 2020
    Assignee: South China University of Technology
    Inventors: Zhang Lin, Weizhen Liu, Xueming Liu, Wencong Rong
  • Patent number: 10562098
    Abstract: The present invention belongs to the technical field of high throughput preparation and hot working of materials, and in particular to a high throughput micro-synthesis method of multi-component materials based on the temperature gradient field controlled by microwave energy. This invention, characterized by flexible material selection, quick temperature rising and high-efficient heating, uses microwave heating both to achieve quick preparation of small block combinatorial materials under the same temperature field in one time and to realize micro-synthesis under the different temperature gradient fields in one time including high-throughput sintering-melting and heat treatment of materials. This invention successfully overcomes drawbacks of current material preparation, such as unitary combination of components, low-efficient external heating, unique control temperature, huge material consumption and high cost during material preparation and heat treatment.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: February 18, 2020
    Assignee: Central Iron and Steel Research Institute
    Inventors: Haizhou Wang, Yunhai Jia, Lei Zhao, Xuebin Chen, Dongling Li, Peng Wang, Guang Feng, Xiaojia Li
  • Patent number: 10563283
    Abstract: Materials and methods for precious metal recovery are disclosed. Usable leaching solutions are preferably aqueous based and include appropriate materials in sufficient quantities to solubilize and stabilize precious metal. Such materials typically include oxidant material. Some or all of the oxidant material can be, in some instances, generated in-situ. The leaching solution is typically contacted with a substrate having a target precious metal, thereby solubilizing precious metal to form a stable, pregnant solution. The precious metal can then be recovered from the pregnant solution. In some instances, components of the leaching solution can be regenerated and reused in subsequent leaching.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: February 18, 2020
    Assignee: Enviroleach Technologies Inc.
    Inventors: Duane Nelson, Steve Scott, Mohammad Doostmohammadi, Hanif Jafari
  • Patent number: 10563284
    Abstract: A method of leaching copper-containing ores includes leaching copper-containing ores or concentrates or tailings of the ores or concentrates with a leach liquor in the presence of an additive that enhances the dissolution of copper from copper minerals in the ores and concentrates by forming a complex between (a) sulfur, that has originated from copper minerals in the ores, and (b) the additive. A method of leaching copper-containing ores includes leaching copper-containing ores or concentrates or tailings of the ores or concentrates with a leach liquor includes leaching copper-containing ores or concentrates or tailings of the ores or concentrates with a leach liquor in the presence of a nitrogen-containing organic complexing additive that forms a complex between sulfur, that has originated from copper minerals in the ores, and the additive.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: February 18, 2020
    Assignee: Technological Resources Pty. Limited
    Inventors: Daniel Arthur Kittelty, Paul Leslie Brown, Ralph Peter Hackl, Pauline Maree Najjar, Anna Zonneveld, Jason Maurice Young
  • Patent number: 10563287
    Abstract: A method of leaching copper-containing ores, such as chalcopyrite ores, with a leach liquor in the presence of silver and an activation agent that activates silver whereby the silver enhances copper extraction from copper ores.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: February 18, 2020
    Assignee: Technological Resources Pty. Limited
    Inventors: Ralph Peter Hackl, Paul Leslie Brown, Stephen Charles Grocott, Daniel Arthur Kittelty
  • Patent number: 10551124
    Abstract: A process for producing high-purity magnesium by means of distillation at reduced pressure, characterized in that, the high-purity magnesium condenses in the liquid state, whereby the starting material in the form of a magnesium-containing melt is present together with the upper region of a condensation vessel in the upper region of a retort, whereby the retort consist of a material that releases no volatile impurities into the magnesium steam, whereby the upper region of the retort is brought to a temperature above the boiling point of magnesium, within the limits of two level lines, and is then held constant, such that steam rises from the boiling magnesium-containing metal melt and fills the interior of the upper region of the retort, whereby the steam infiltrating the upper region of the condensation vessel condenses below the lower level line and collects as high-purity melt in the lower region of the condensation vessel, and whereby in order to prevent contaminated melt that drops from the region above
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: February 4, 2020
    Assignee: ETH Zuerich
    Inventors: Christian Wegmann, Joerg Loeffler, Peter Uggowitzer, Minh Becker, Heinrich Feichtinger
  • Patent number: 10550449
    Abstract: An apparatus for separating and recovering the components of an alloy, particularly a noble alloy, including a high vacuum chamber housing at least one crucible for the alloy to be separated; at least one heating element arranged, during use, around the crucible; at least one condensation device, which faces, during use, an upper mouth of the crucible. The particularity of the present invention resides in that the condensation device includes at least one cold element and at least one deflector that is adapted to divert the flow of the aeriform substances derived from the melting and evaporation of the alloy toward the cold element. The invention also relates to a process for separating and recovering the components of an alloy, particularly a noble alloy.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: February 4, 2020
    Assignee: IKOI S.P.A.
    Inventors: Giovanni Faoro, Aleksandr Khlebnikov, Denis Borovkov, Sergey Medvedev, Sergey Grokhovsky
  • Patent number: 10550450
    Abstract: A method of leaching copper from a copper sulfide ore which includes adding a potential adjustment agent for lowering a potential of a leaching solution obtained after leaching copper from the copper sulfide ore by using iodide ion and iron (III) ion, the leaching solution being stored in a tank for storing the leaching solution.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: February 4, 2020
    Assignee: JX NIPPON MINING & METALS CORPORATION
    Inventors: Shintaro Kawashiro, Akira Miura
  • Patent number: 10538826
    Abstract: Disclosed is an AMS process using a water-leachable alloy that reacts with water and dissolves, and a porous metal manufactured using the same. An AMS precursor including element groups that are selected in consideration of the relationship of heat of mixing with the water-leachable alloy composition to be subjected to the AMS process is immersed in the alloy melt, thus manufacturing a bi-continuous structure alloy. The bi-continuous structure alloy is subjected to dealloying using water, thus manufacturing the porous metal. The water-leachable alloy is a Ca-based alloy having high reactivity to water and high oxidation resistance at high temperatures, and a dealloying process thereof is performed using only pure water, unlike a conventional dealloying process performed using a toxic etching solution of a strong acid/strong base. The metal porous body has high elongation, a large surface area, and low thermal conductivity.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: January 21, 2020
    Assignee: Seoul National University R&DB Foundation
    Inventors: Eunsoo Park, Kooknoh Yoon, Jein Lee, Wookha Ryu, Geun Hee Yoo
  • Patent number: 10533239
    Abstract: A method of recovering rare earth elements from a rare earth-containing material comprises contacting the rare earth-containing material with a solution formulated and configured to dissolve rare earth elements from the rare earth-containing material and form a solution including a plurality of rare earth elements dissolved therein. The method further includes exposing the solution including the plurality of rare earth elements dissolved therein to one of a liquefied gas or a supercritical fluid to isolate the rare earth elements from each other. Related methods of removing and purifying rare earth elements from materials and phosphor lamps are also disclosed.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: January 14, 2020
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Robert Vincent Fox, Bruce J. Mincher, Mary Ellen Case, Donna Ly Baek, Chien M. Wai, Clive Yen, Horng-Bin Pan
  • Patent number: 10533238
    Abstract: A process for recovering non-ferrous metals from a solid matrix may include: (a) leaching the solid matrix with an aqueous-based solution containing chloride ions, ammonium ions, and Cu2+ ions, having a pH of 6.5-8.5, in a presence of oxygen, at a temperature of 100° C.-160° C. and a pressure of 150 kPa-800 kPa, so as to obtain an extraction solution comprising leached metals and solid leaching residue; (b) separating the solid leaching residue from the extraction solution; and/or (c) subjecting the extraction solution to at least one cementation so as to recover the leached metals in elemental state. The pH may be greater than or equal to 6.5 and less than or equal to 8.5. Temperature may be greater than or equal to 100° C. and less than or equal to 160° C. Pressure may be greater than or equal to 150 kPa and less than or equal to 800 kPa.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: January 14, 2020
    Assignee: METALS TECHNOLOGY DEVELOPMENT COMPANY LLC
    Inventors: Massimo Giuseppe Maccagni, Jonathan Hylkjier Nielsen, William Leonard Lane, David Michael Olkkonen, Timothy Roy Hymer
  • Patent number: 10526670
    Abstract: The present blast furnace and method for operating a blast furnace are able to reduce CO2 production and the amount of applied additives and heating material. The method for metal production of metal ores comprising the following steps: reducing a metal ore, particularly a metal oxide, and thereby producing furnace gas containing CO2 in a blast furnace shaft; discharging the furnace gas from the blast furnace shaft; directing at least a portion of the furnace gas into a CO2 converter and reducing the CO2 in the furnace gas into CO; directing at least a portion of the CO from the CO2 converter into the blast furnace shaft. The method produces CO as a gaseous reduction agent which may be easily introduced into the blast furnace shaft. Further, a blast furnace for metal production by reducing a metal ore designed for operating according to the method is described.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: January 7, 2020
    Assignee: CCP TECHNOLOGY GMBH
    Inventor: Olaf Kuhl
  • Patent number: 10513751
    Abstract: Integrated PGM converting process. The process includes smelting a catalyst material in a primary furnace, smelting the primary furnace slag in a secondary furnace, converting the collector alloys from the primary and secondary furnaces in a converter to recover PGM enriched alloy and converter slag, separating the recovered converter slag into first and second converter slag portions, and supplying the first converter slag portion to the secondary furnace for smelting with the primary furnace slag. The process can also include low- or no-flux converting; refractory protectant addition; magnetic slag separation; partial feed pre-oxidation; staged slagging; and/or jacketing the converter.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: December 24, 2019
    Assignee: Techemet, LP
    Inventors: Edward W. Albrecht, Steven D. McCullough