Patents Examined by Tima McGuthry-Banks
  • Patent number: 6508853
    Abstract: To be able to produce metal melts using any metal carriers incurring in metallurgical practice as the charging materials, namely in the most diverse quantitative compositions, a plant for producing metal melts is provided with the following characteristic features: an electric arc furnace vessel (1) provided with one charging opening (11, 21) for a metal melt and/or scrap and/or direct reduced metal, in particular direct reduced iron, and/or ore and at least one electrode (16) and one slag tapping means (22), an oxygen-blowing converter vessel (3) provided with one melt tapping means (41), wherein the oxygen-blowing converter vessel (3) and the electric arc furnace vessel (1) form a unit which is connected via an overflow weir (34) and which is rigidly mounted on the foundation and, wherein the bath surface related specifically to the bath volume is smaller in the oxygen-blowing converter vessel (3) than in the electric arc furnace vessel (1) and the oxygen-blowing converter vessel (3) shares a common re
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: January 21, 2003
    Assignee: Voest-Alpine Industrieanlagenbau GmbH
    Inventors: Stefan Dimitrov, Norbert Ramaseder, Wilfried Pirklbauer, Yoyou Zhai, Johannes Steins, Ernst Fritz, Johannes Müller
  • Patent number: 6508854
    Abstract: A method of preparing a magnetostrictive material, including the steps of: (a) forming a melt of metals having a composition corresponding to the magnetostrictive material; (b) subjecting the melt to a micro-gravity environment; and (c) cooling the melt in the micro-gravity environment at a rate of at least 50° C. per second, while applying a magnetic field to the melt, to solidity the melt.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: January 21, 2003
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hideki Minagawa, Takeshi Okutani, Hideaki Nagai, Takashi Tsurue, Yoshinori Nakata, Keiji Kamada
  • Patent number: 6506228
    Abstract: A method for preparing a platinum alloy electrode catalyst for DMFC using anhydrous metal chlorides. The method includes reducing platinum chloride and non-aqueous second metal chloride with boron lithium hydride (LiBH4) in a water-incompatible organic solvent in a nitrogen atmosphere to form nano-sized particles of colloidal platinum alloy, and drying the platinum alloy particles without any heat treatment. The method of preparing a platinum alloy catalyst according to the present invention makes it possible to prepare platinum alloy particles having a narrow range of size distribution and an average particle size of less than 2 nm with ease, relative to the conventional methods. The platinum alloy particles thus obtained can be used as an electrode catalyst for DMFC to enhance methanol oxidation performance.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: January 14, 2003
    Assignee: Kwangju Institute of Science and Technology
    Inventors: Seol Ah Lee, Kyung Won Park, Boo Kil Kwon, Yung Eun Sung
  • Patent number: 6506225
    Abstract: In a steelmaking process in which, in order to desulfurize iron melts (4) using a strongly basic slag in a desulfurization vessel (7), the desulfurization slag (8) is brought to a temperature of from 1400-1800° C.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: January 14, 2003
    Assignee: Voest-Alpine Industrieanlagenbau GmbH
    Inventor: Hermann Pirker
  • Patent number: 6500229
    Abstract: A method for treating steel works dust in order to recuperate elements capable of being upgraded. The method comprises attrition in water followed by hydraulic grading of the resulting load. The method is characterized in that is further comprises: a washing step to separate the water soluble saline fractions of the insoluble oxides; hot treatment to eliminate metals in the form of free oxides such as zinc and lead; treatment by heating at a temperature ranging between 240 and 800° C.; treatment with sulphuric acid having a concentration between 5 and 8%.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: December 31, 2002
    Assignee: Recupac
    Inventors: Gilles Roux, Farouk Tedjar
  • Patent number: 6497771
    Abstract: An aqueous solution contains phosphate for producing layers of phosphate on metal surfaces selected from the group consisting of iron, steel, zinc, zinc alloys, aluminum and aluminum alloys. The solution contains 0.3 to 5 g Zn2+/1, 0.1 to 2 g nitroguanidine/1 and 0.05 to 0.5 g hydroxylamine/l, with an S-value amounting to 0.03 to 0.3 and the ratio of the weight of Zn2+ to P2O5=1:5 to 1.30.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: December 24, 2002
    Assignee: Metallgesellschaft Aktiengesellschaft
    Inventors: Peter Schubach, Joachim Heitbaum, Thomas Kolberg, Margit Fleischhacker-Jeworrek, Peter Jorns, Michael Deemer, Ralf Stickler, Jurgen Specht, Michael Lenhard
  • Patent number: 6497745
    Abstract: The present invention relates generally to a process for the production of sulfuric acid and liberation of precious metal values from materials containing sulfur through pressure leaching operations. In accordance with various aspects of the present invention, the sulfur-bearing materials may comprise residues from pressure leaching operations, such as those carried out at medium temperatures. The process of the present invention can be advantageously used to convert such sulfur-bearing materials to sulfuric acid by means of pressure leaching. The sulfuric acid so produced can be used beneficially in other mineral processing operations, for example those at the site where it is produced. Metals, such as precious metals, that are contained within the sulfur-bearing materials advantageously may be recovered from processing products by established precious metals recovery technology.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: December 24, 2002
    Assignee: Phelps Dodge Corporation
    Inventors: John O. Marsden, Robert E. Brewer, Joanna M. Robertson, Wayne W. Hazen, Philip Thompson, David R. Baughman
  • Patent number: 6497744
    Abstract: An ion source 2 has a heating furnace 4 for annealing a solid material 6 to generate a steam 8 and a plasma generator 16 for ionizing the steam 8 to generate a plasma 24. The ion source 2 is for generating ion beam. An indium trifluoride is used as said solid material which has been once heated at temperature in the range of 600° C. to lower than 1170° C., thereby enabling to generate the indium ion beam in a stable amount. For the solid material 6, In(OF)xF3−x (x is 1, 2 or 3) may be used.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: December 24, 2002
    Assignee: Nissin Electric Co., Ltd.
    Inventor: Takatoshi Yamashita
  • Patent number: 6494933
    Abstract: The invention relates to a method of utilizing secondary raw materials containing iron, zinc and lead, preferably steelmaking dusts, in a rotary tubular furnace customarily equipped for the rolling process, with basically adjusted rolling slag. By reducing the portion of the carbon carriers in the burden, the energy balance of the rolling process is improved on one hand, and the throughput of the rotary tubular furnace used is increased on the other hand. By improving the quality of the rolling slag, the capability of utilizing the same is favored.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: December 17, 2002
    Assignees: B. U. S. Zinkrecycling Freiberg GmbH, FNE Forschungsinstitut fur Nichteisen-Metalle
    Inventors: Eberhard Saage, Uwe Hasche, Wolfgang Dittrich, Diethart Langbein
  • Patent number: 6485542
    Abstract: An Ni—Fe alloy material suitable for forming a ferromagnetic Ni—Fe alloy thin film is provided. The magnetic thin film produces a small number of particles during sputtering, and excels in corrosion resistance and magnetic properties. A method of manufacturing an Ni—Fe alloy sputtering target used to make the thin film is also provided. In addition, an Ni—Fe alloy sputtering target for forming magnetic thin films is provided. The sputtering target is characterized in that it has: an oxygen content of 50 ppm or less; an S content of 10 ppm or less; a carbon content of 50 ppm or less, and a total content of metal impurities other than the alloy components of 50 ppm or less. Such an Ni—Fe alloy target can be produced by melting and alloying high-purity materials obtained by dissolving the raw materials in hydrochloric acid, and performing ion exchange, activated-charcoal treatment, and electrolytic refining.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: November 26, 2002
    Assignee: Japan Energy Corporation
    Inventors: Yuichiro Shindo, Tsuneo Suzuki
  • Patent number: 6485539
    Abstract: A method of alnico alloy melting includes melting a charge, oxidizing refining of the melted charge, with the melting including introducing the charge into a flux that is heated try electrical current, maintaining a temperature of the flux in a range of 1500-1800° C., and carrying out the oxidizing refining until an aluminum content reaches 0.05-1.0%.
    Type: Grant
    Filed: October 21, 2000
    Date of Patent: November 26, 2002
    Inventor: Vladislav M. Sokolov
  • Patent number: 6485581
    Abstract: A bearing for use in the main spindle of a machine tool is provide, in which at least the raceway of the bearing contains by mass, C: 0.6-1.3%, Si: 0.3—3.0%, Mn: 0.2-.5%, P: 0.03% or less, S: 0.03% or less, Cr: 0.3-5.0%, Ni: 0.1-3.0%, Al: 0.050% or less, Ti: 0.003% or less, O: 0.0015% or less, N: 0.015% or less; and the rest is composed of Fe and unavoidable impurities. The raceway is tempered after either quenching or carbonitriding and its surface hardness presents at least HRC 58 after tempering.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: November 26, 2002
    Assignee: NTN Corporation
    Inventors: Hiroshi Tako, Mamoru Mizutani
  • Patent number: 6482277
    Abstract: A hydrogen-absorbing alloy electrode is prepared by reducing an oxide or hydroxide residing on the surface of a hydrogen-absorbing alloy particle while the alloy particle is held in an atmosphere of a hydrogen gas maintained at a temperature where absorbing of a hydrogen gas does not substantially occur; cooling the atmosphere from a temperature where absorbing of the hydrogen gas does not substantially occur to a temperature where the equilibrium hydrogen pressure of the hyrogen-absorbing alloy is equal to the hydrogen pressure in the atmosphere of the hydrogen gas and thereafter vacuum-evacuating and removing the hydrogen gas so that the hydrogen-absorbing alloy particle is cooled to room temperature while the hydrogen gas is exhausted; and thereafter introducing argon, nitrogen or carbon dioxide gas into the atmosphere, thereby returning the atmosphere to normal atmospheric pressure; and immersing the hydrogen-absorbing alloy particle so prepared in a solution containing an oxidation inhibiting agent.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: November 19, 2002
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Teruhiko Imoto, Tadashi Ise, Yohei Hirota, Takayuki Murakami
  • Patent number: 6478841
    Abstract: Disclosed is a method for steel making which includes charging a direct reduction reactor (DRR) with iron ore from a charging system. The iron ore is reduced to hot direct reduced iron (DRI) in the DRR and discharged to rotary kiln(s). The rotary kiln(s) does not process the DRI, but transports the hot DRI to one or more electric arc furnaces (EAF). Top gas (i.e., spent reducing gas) is drawn off of a top section of the DRR. A portion of the top gas is used to pressurize the rotary kiln to prevent air from entering the rotary kiln. Another portion of the top gas flows to a pressure swing adsorber or a vacuum pressure swing adsorber (PSA/VPSA) for CO2 and H2O removal. A cool reducing gas exits the PSA/VPSA. A plasma torch burns natural gas and oxygen to form a hot reducing gas. The hot reducing gas is mixed with the cool reducing gas to form a final reducing gas. The final reducing gas is delivered to the DRR. Also disclosed is a mini-mill to perform the method of steel making.
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: November 12, 2002
    Assignee: Techint Technologies Inc.
    Inventors: Dominic M. Faccone, Narayan Govindaswami
  • Patent number: 6475264
    Abstract: A process for direct smelting a metalliferous feed material is disclosed. The process includes the steps of partially reducing metalliferous feed material and substantially devolatilising coal in a pre-reduction vessel and producing a partially reduced metalliferous feed material and char. The process also includes direct smelting the partially reduced metalliferous feed material to molten metal in a direct smelting vessel using the char as a source of energy and as a reductant and post-combusting reaction gas produced in the direct smelting process with pre-heated air or oxygen-enriched air to a post-combustion level of greater than 70% to generate heat required for the direct smelting reactions and to maintain the metal in a molten state.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: November 5, 2002
    Assignee: Technological Resources Pty Ltd
    Inventor: Rodney James Dry
  • Patent number: 6471743
    Abstract: Disclosed and claimed are efficient methods for leaching minerals from ores using an acidic solution such as sulfuric acid. Additional factors which can improve mineral recovery include the use of an alkali metal halide, grinding the ore, addition of a carbon source, and/or, adjustment of the temperature at which the process is carried out. Minerals such as titanium, iron, nickel, cobalt, silver and gold may be recovered by the methods of the present invention.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: October 29, 2002
    Assignee: MBX Systems, Inc.
    Inventors: Tom L. Young, Michael G. Greene, Dennis R. Rice, Kelly L. Karlage, Sean P. Premeau
  • Patent number: 6471795
    Abstract: A hydrogen storage alloy of TiaMnbVcZrd (one of two kinds or more of Fe, Co, Cu, Zn, Ca, Al, Mo and Ni)x (herein, a is 10 to 40 atomic %, b is 40 to 60 atomic %, c is 5 to 30 atomic %, d is 15 atomic % or less, and x is 0 to 10 atomic %) is obtained by the rapid solidification (solidification at the cooling rate of desirably 103° C./sec or higher).
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: October 29, 2002
    Assignee: The Japan Steel Works Ltd.
    Inventors: Kazuya Kubo, Toshiki Kabutomori, Hideaki Itoh
  • Patent number: 6468327
    Abstract: The invention relates to a method for processing residues containing at least one non-ferrous metal, preferably chosen from the group comprising zinc, lead, nickel, copper and cadmium and/or compounds thereof. According to this method, the non-ferrous metal is extracted from the residues by an extracting agent containing a carboxylic acid and/or a substituted carboxylic acid and/or its alkali salts and/or ammonium salts and/or mixtures thereof.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: October 22, 2002
    Assignee: VTU - Engineering GmbH
    Inventors: Matthaeus Siebenhofer, Wilhelm Hans Zapfel, Hertha Luttenberger
  • Patent number: 6464753
    Abstract: A method of processing flue dust that contains one or more compounds from a first group of zinc, lead and cadmium compounds, and contains iron compounds, involves heating the flue dust to cause a substantial portion of one or more of the compounds of the first group to become gas-borne. A carbonaceous material is introduced to the remaining flue dust, and the flue dust/carbonaceous material mixture is heated to cause a substantial portion of the remaining compounds from the first group to become gas-borne while retaining a substantial portion of the iron in a non-gas-borne condition. The gas-borne compounds are separated from the non-gas-borne compounds.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: October 15, 2002
    Assignee: Maumee Research & Engineering, Incorporated
    Inventors: Deane A. Horne, Dennis W. Coolidge
  • Patent number: RE37897
    Abstract: A method for making steel in an electric furnace, wherein a predetermined amount of liquid melt is fed into the electric furnace. The method comprises the steps of (a) continuously feeding a controlled flow of liquid melt into the furnace without interrupting the heating from the electric arc, (b) continuously injecting a refining gas into the furnace before the C and/or Si content of the metal bath reaches a predetermined value, until the end of the feeding process, and (c) pursuing the injection of refining gas after the predetermined amount of melt has been fed into the furnace, until the target value for the C and/or Si content of the metal bath has been reached.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: November 5, 2002
    Assignee: Paul Wurth S.A.
    Inventors: André Kremer, Guy Denier, Jean-Luc Roth