Patents Examined by Timothy Kennedy
  • Patent number: 11890812
    Abstract: The present disclosure provides a 3D printing method including: a resin providing step of providing a dual cure resin; a light curing step of irradiating the dual cure resin by an ultraviolet light to perform 3D printing so as to form an intermediate body having a predetermined lattice shape; a stretching step of applying a stress on the intermediate body in a stretching direction according to a stretching ratio of a predetermined size to stretch and form a stretched body; and a thermal curing step of heating the stretched body to perform thermal curing and shaping so as to form a 3D printing formed body. When the light curing step is performed, a size in a non-stretching direction of the intermediate body is correspondingly pre-compensated based on the stretching ratio. The present disclosure further provides a 3D printing formed body.
    Type: Grant
    Filed: December 1, 2022
    Date of Patent: February 6, 2024
    Assignee: AMPLIFI TECH (XIAMEN) LIMITED
    Inventors: Zhi-Min Shao, Sheng-Fa Chen, Feng-Ming Chen
  • Patent number: 11884539
    Abstract: Methods and systems for high-speed production of nanoparticles with very high product yields are described. Systems utilize concentric micro-scale capillaries arranged to define nanoparticle formation regions that lie along predetermined length(s) of the capillaries. Flow through the formation regions can be laminar during a formation protocol. The system can include on-line analytical tools for real time characterization of products or intermediates. Systems include an additive manufacturing-type deposition at the terminus of the formation section. The deposition area includes a print head and a print bed and provides for random or patterned deposition of nanoparticles. The print head and/or the print bed can be capable of motion in one or more degrees of freedom relative to one another.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: January 30, 2024
    Assignee: Battelle Savannah River Alliance, LLC
    Inventors: Simona E. Hunyadi Murph, Vahid Majidi
  • Patent number: 11878453
    Abstract: A hotrunner assembly for an injection molding apparatus includes a hotrunner manifold, a nozzle for conveying liquid resin from an outlet of the hotrunner manifold, a valve pin linearly movable within and along a longitudinal axis of the nozzle to control flow of the liquid resin from the outlet of the hotrunner manifold, an actuator for driving the valve pin, a primary seal disposed radially between the valve pin and walls of a bore extending through the hotrunner manifold, and a secondary seal located axially between the hotrunner manifold and the actuator and circumscribing a section of the valve pin to prevent gases or liquid resin from contacting the actuator.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: January 23, 2024
    Inventors: Scott Greb, Anton Joerg, Christian Striegel
  • Patent number: 11880195
    Abstract: The embodiments are and include at least an apparatus, system and method for forming print material particles for additive manufacturing (AM) printing. The apparatus, system and method include at least a melt chamber comprising a polymer melt; a vertical extruder that fluidically receives the polymer melt; an atomizer that atomizes the polymer melt from the vertical extruder and that distributes the atomized polymer melt; a fall chamber comprising a plurality of zones into which the atomized polymer melt is distributed; and a collector to receive the print material particles formed of the atomized polymer melt after falling through the plurality of zones.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: January 23, 2024
    Assignee: JABIL INC.
    Inventors: Nicholas J. Dippel, Thomas Gardner, Daryn York
  • Patent number: 11874479
    Abstract: Device for printing three-dimensional objects using an energy-field projection system. In operation, energy is projected into a print medium according to a four dimensional (4D) energy-field function for exposing the print-medium to a threshold energy-intensity level that causes the print medium to harden in the shape of a three-dimensional object.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: January 16, 2024
    Assignee: Light Field Lab, Inc.
    Inventors: Jonathan Sean Karafin, Brendan Elwood Bevensee
  • Patent number: 11872750
    Abstract: Methods and apparatus for the fabrication of solid three-dimensional objects from liquid polymerizable materials at high resolution. A material is coated on a film non-digitally, excess material is removed digitally, by laser, leaving an image of a layer to be printed, and the image is then engaged with existing portions of an object being fabricated and exposed to a non-digital heat source. Since the only part of the process that is digital is the material removal, and this part is done by laser, the speed of printing and the robustness of the manufacturing process is improved significantly over conventional additive or 3D fabrication techniques.
    Type: Grant
    Filed: May 1, 2023
    Date of Patent: January 16, 2024
    Assignee: IO Tech Group Ltd.
    Inventors: Ziv Gilan, Michael Zenou, Guy Nesher
  • Patent number: 11868124
    Abstract: The embodiments are and include at least an apparatus, system and method for forming print material particles for additive manufacturing (AM) printing. The apparatus, system and method include at least a melt chamber comprising a polymer melt; a vertical extruder that fluidically receives the polymer melt; an atomizer that atomizes the polymer melt from the vertical extruder and that distributes the atomized polymer melt; a fall chamber comprising a plurality of zones into which the atomized polymer melt is distributed; and a collector to receive the print material particles formed of the atomized polymer melt after falling through the plurality of zones.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: January 9, 2024
    Inventors: Nicholas Dippel, Thomas Gardner
  • Patent number: 11865767
    Abstract: Systems and methods in which a material or materials (e.g., a viscous material) are printed or otherwise transferred onto an intermediate substrate at a printing unit(s). The intermediate substrate having an image of material printed thereon is subsequently transferred to a sample building unit, and the image of material is transferred from the intermediate substrate to a sample at the sample building unit. Optionally, the printing unit(s) includes a coating system that creates a uniform layer of the material on a donor substrate, and the material is transferred from the donor substrate onto the intermediate substrate at the printing unit(s). Each of the printing units may employ a variety of printing or other transfer technologies. The system may also include material curing, heating, sintering, ablating, material filling, imaging and cleaning units to aid in the overall process.
    Type: Grant
    Filed: April 20, 2023
    Date of Patent: January 9, 2024
    Assignee: IO Tech Group Ltd.
    Inventors: Michael Zenou, Ziv Gilan, Guy Nesher
  • Patent number: 11860618
    Abstract: The embodiments are and include at least an apparatus, system and method for forming print material particles for additive manufacturing (AM) printing. The apparatus, system and method include at least a melt chamber comprising a polymer melt; a vertical extruder that fluidically receives the polymer melt; an atomizer that atomizes the polymer melt from the vertical extruder and that distributes the atomized polymer melt; a fall chamber comprising a plurality of zones into which the atomized polymer melt is distributed; and a collector to receive the print material particles formed of the atomized polymer melt after falling through the plurality of zones.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: January 2, 2024
    Assignee: JABIL INC.
    Inventors: Nicholas J. Dippel, Thomas Gardner, Daryn York
  • Patent number: 11858204
    Abstract: The invention describes a laser printing system (100) for illuminating an object moving relative to a laser module of the laser printing system (100) in a working plane (180), the laser module comprising at least two laser arrays of semiconductor lasers and at least one optical element, wherein the optical element is adapted to image laser light emitted by the laser arrays, such that laser light of semiconductor lasers of one laser array is imaged to one pixel in the working plane of the laser printing system, and wherein the laser printing system is a 3D printing system for additive manufacturing and wherein two, three, four or a multitude of laser modules (201, 202) are provided, which are arranged in columns (c1, c2) perpendicular to a direction of movement (250) of the object in the working plane (180), and wherein the columns are staggered with respect to each other such that a first laser module (201) of a first column of laser modules (c1) is adapted to illuminate a first area (y1) of the object and a
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: January 2, 2024
    Assignee: EOS GMBH ELECTRO OPTICAL SYSTEMS
    Inventors: Thomas Mattes, Stefan Paternoster, Gerd Cantzler, Jochen Philippi, Stephan Gronenborn, Gero Heusler, Holger Moench, Ralf Conrads
  • Patent number: 11858852
    Abstract: Systems and methods for preparing a three-dimensional printing material derived from aluminosilicate material are provided. The method includes the steps of heating an amount of aluminosilicate powder to a temperature between approximately 1,100° C. and approximately 1,750° C. to form a molten aluminosilicate material; maintaining the molten aluminosilicate material at a temperature between approximately 1,100° C. and approximately 1,750° C. between about one minute and approximately 45 minutes; extruding molten aluminosilicate material through a nozzle to form an elongated bead of molten aluminosilicate material; and cooling the molten aluminosilicate material to form a hardened aluminosilicate material. Once hardened, the aluminosilicate material includes between about 50% and 90% feldspar and demonstrates a strength of between about 5,000 psi and 30,000 psi.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: January 2, 2024
    Assignee: ICON Technology, Inc.
    Inventors: Kunal Kupwade-Patil, Michael McDaniel, Thao Hien Nguyen, Theodore Cera, Alexander Le Roux, Jason Ballard
  • Patent number: 11858206
    Abstract: Disclosed embodiments relate to recoater systems for use with additive manufacturing systems. A recoater assembly may be used to deposit a material layer onto a build surface of an additive manufacturing system. In some instances, the recoater assembly may include a powder entrainment system that trails behind a recoater blade of the recoater assembly relative to a direction of motion of the recoater blade across a build surface of the additive manufacturing system. The powder entrainment system may generate a flow of fluid across a portion of the build surface behind the recoater blade that at least temporarily entrains powder above a threshold height from the build surface to mitigate, or prevent, the formation of defects on the build surface with heights greater than the threshold height.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: January 2, 2024
    Assignee: VulcanForms Inc.
    Inventor: Matthew Sweetland
  • Patent number: 11840017
    Abstract: An improved additive fabrication device and a build platform are provided. The additive fabrication device is configured to form layers of material on a build surface. The additive fabrication device comprising: a build platform comprising: a rigid structure; an actuation structure attached to the rigid structure, wherein the actuation structure comprises one or more sheet handles and a flexible sheet, and wherein a first surface of the flexible sheet forms a build surface on which the additive fabrication device is configured to form layers of materials; and the one or more sheet handles are configured to be actuated to apply a force to the flexible sheet while at least a part of the actuation structure remains attached to the rigid structure, to deform at least a part of the flexible sheet away from the rigid structure.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: December 12, 2023
    Assignee: Formlabs, Inc.
    Inventors: Mark J. Frykman, Mark J. Ripoll, Lawrence Cheung, Nathan Jeffery, Yoav Reches, Derek J. Vilim
  • Patent number: 11840107
    Abstract: A method for generating three dimensional indicators for the visually impaired. The method includes selecting one or more pre-designed symbols from a plurality of pre-designed symbols. The pre-designed symbols represent standard building layout features and are sized to be readable via a physical touch. The method further includes inserting the one or more selected symbols into a two dimensional digital layout, and generating one or more of an orientation object and a legend object into the two dimensional digital layout. The method further includes converting the two dimensional digital layout into a three dimensional digital model, and generating an output file including the three dimensional model in a format compatible with a three dimensional printing device.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: December 12, 2023
    Assignee: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Howard David Kaplan, Spenser Fox Mason
  • Patent number: 11833743
    Abstract: A 3D printing apparatus includes a synthetic resin bath for a photosensitive synthetic resin and a lifting apparatus. The photosensitive synthetic resin at the lifting apparatus is polymerizable by light of a specified wavelength. The 3D printing apparatus further includes a carrier medium having a coupling-in region and a coupling-out region, and an illumination apparatus to emit light onto the coupling-in region. The coupling-in region includes a coupling-in deflection structure to couple light of the specified wavelength incident on the coupling-in deflection structure from the illumination apparatus, into the carrier medium in a direction of the coupling-out region, and the coupling-out region is disposed below the synthetic resin bath and includes a coupling-out deflection structure configured to couple the light of the specified wavelength that is incident on the coupling-out deflection structure, as an exposure pattern, out of the carrier medium onto the photosensitive synthetic resin.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: December 5, 2023
    Assignee: AUDI AG
    Inventors: Markus Klug, Tobias Moll, Johannes Scheuchenpflug
  • Patent number: 11826951
    Abstract: A three-dimensional (3D) bioprinting method and system are disclosed. The method includes disposing/immersing a printing platform or surface into a first bioink, such as a bioink resin, curing one or more layer of the first bioink resin onto the printing platform or surface, and removing the printing platform or surface from the first bioink resin. The process is repeated with a second bioink resin such that the second bioink resin is cured on top of the one or more layer of first bioink resin, and can be further repeated with a third or even fourth bioink resin. By varying constituents of one or more or each bioink resin (such as living cell type or polymer), complex, multilayered tissues can be engineered. A system capable of performing the method is also disclosed.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: November 28, 2023
    Assignee: Cellink AB
    Inventors: Christen J. Boyer, Hector Martinez, Erik Gatenholm
  • Patent number: 11813795
    Abstract: Provided is a method of making a cured object having a surface coating bonded thereto, which may include: providing an intermediate object produced in an additive manufacturing process such as stereolithography by light polymerization of a dual cure resin, the resin comprising a mixture of (i) a light polymerizable first component, and (ii) a second component that is different from the first component; applying a first reactive coating composition to a surface portion of the object to form a first coating thereon; optionally, but in some embodiments preferably, applying a second reactive coating composition to the first coating to form a second coating thereon; and heating the object at (and for) a time and to a temperature sufficient to bond the first coating to the surface portion, and bond the second coating when present to the first coating, and form the cured object having a surface coating bonded thereto.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: November 14, 2023
    Assignee: Carbon, Inc.
    Inventors: Jason P. Rolland, Matthew S. Menyo, Joseph M. Desimone
  • Patent number: 11813839
    Abstract: A method and apparatus for printing on an article are disclosed. An embodiment of a method may include the generation of a virtual mask that can designate areas for printing and/or designate areas to exclude from printing. A method may include utilization of the virtual mask during either 2D or 3D printing such that a print design is printed in areas designated for printing by the virtual mask.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: November 14, 2023
    Assignee: NIKE, Inc.
    Inventor: Todd W. Miller
  • Patent number: 11806957
    Abstract: The light guide film product processing apparatus provided in the present invention relates to the field of light guide film processing, and includes an unwinding device for transmitting a first light guide film, a dot processing device, a cooling device, a cutting device, a waste collecting device, and a product collecting device that are sequentially installed along the transmission direction of the first light guide film, and a linkage controller; the dot processing device transfers dots on both sides of the first light guide film, the cooling device cools the first light guide film after dot processing, the cutting device cuts the cooled first light guide film, the waste collecting device is configured to wind a second light guide film, and the second light guide film is a remaining material after the first light guide film is cut into a light guide film product; and the included angle formed between the winding and transmission direction of the second light guide film and the transmission direction of th
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: November 7, 2023
    Assignee: NANJING BREADY ELECTRONICS CO., LTD.
    Inventors: Yong Liu, Yonggang Li
  • Patent number: 11806913
    Abstract: Provided is a head for a multi-layer extrusion device which can be easily and accurately adjusted to a change in size of an extruder and a change in extrusion shape. A head 1 for a multi-layer extrusion device is provided with a plurality of flow paths for separately guiding elastomer materials G from a plurality of extruders 2 to a pre-former attachment unit. The head 1 comprises: a main head 10 to which each extruder 2 is connected; an upper head part 11 positioned above the main head 10; and a lower head part 12 positioned below the main head 10. The plurality of extruders 2 include a first extruder 5 and a second extruder 6.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: November 7, 2023
    Assignee: Nakata Engineering Co., Ltd.
    Inventor: Takeshi Hashimoto