Patents Examined by Tran M Tran
  • Patent number: 10260981
    Abstract: A pressure sensor includes a diaphragm suspended across a cavity in a substrate. A first group of piezoresistors is provided in the diaphragm, the piezoresistors of the first group being coupled to one another to form a first Wheatstone bridge having first positive and negative output nodes. A second group of piezoresistors is provided in the diaphragm, the piezoresistors of the second group being coupled to one another to form a second Wheatstone bridge having second positive and negative output nodes. The first negative output node of the first Wheatstone bridge is electrically connected to the second positive output node of the second Wheatstone bridge to directly chain the outputs of the Wheatstone bridges. The first and second Wheatstone bridges each produce an output signal as a function of an external pressure stimulus that is combined via the chained arrangement of the Wheatstone bridges to produce a composite output signal.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: April 16, 2019
    Assignee: NXP USA, Inc.
    Inventors: Paige M. Holm, Mark Edward Schlarmann
  • Patent number: 10216698
    Abstract: A device for analyzing a fluid, including a layer including a plurality of sensors of MEMS and/or NEMS type, a layer including a mechanism controlling the sensor and for processing information transmitted by the sensors, the control and processing mechanism being electrically connected to the detectors, and a layer positioned on the layer including the sensors on a side of a face including the sensors including a mechanism spatially and temporally distributing the fluid on the sensors.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: February 26, 2019
    Assignees: Commissariat à l 'Energie Atomique et aux Energies Alternatives, California Institute of Technology
    Inventors: Thomas Ernst, Philippe Andreucci, Eric Colinet, Laurent Duraffourg, Edward B. Myers, Michael L. Roukes
  • Patent number: 10203256
    Abstract: A transducer baseplate includes a base, a protrusion extending from the base along a longitudinal axis, a pair of opposed transducer receptacles defined within the protrusion, and respective pressure plena. The pressure plena are separated by a plenum wall, each plenum being in fluid connection with an area external to the protrusion through a respective pressure line. The pressure lines provide a direct fluid path to their respective receptacles.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: February 12, 2019
    Assignee: Rosemount Aerospace Inc.
    Inventors: Saeed Fahimi, Odd H. Eriksen, Charles Little
  • Patent number: 10203307
    Abstract: Systems, methods, and apparatus provide integration of microscopic imaging and liquid chromatography-mass spectrometry on a microfluidic device. In one aspect, an apparatus includes a first wafer, a second wafer, and an emitter. The emitter is disposed between the first wafer and the second wafer. The first wafer defines a sample input hole. The first wafer and the second wafer define a first channel, the first channel including a first end and a second end. The first end of the first channel is proximate the sample input hole. The first channel is configured to contain separation media. The second end of the first channel is proximate the emitter.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: February 12, 2019
    Assignee: The Regents of the University of California
    Inventors: Daojing Wang, Pan Mao, Rafael Gomez-Sjoberg, Hung-Ta Wang, Peidong Yang
  • Patent number: 10180379
    Abstract: An environmental chamber includes an enclosure having opposed walls each wall having an aperture of size to receive a test specimen support therethrough. The apertures are aligned with each other along on a reference axis. A forced air source is configured to supply forced air in a direction to intersect with the reference axis within the enclosure. A diverter is positioned between the forced air source and the reference axis. The diverter is configured to receive the forced air and control the air flow past different portions of the reference axis. The environmental chamber is used with a load frame having test specimen supports extending into the opposed apertures. A method of directing more force air at the test specimen supports than at at least a portion of the test specimen to maintain a selected temperature gradient in the test specimen is also provided.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: January 15, 2019
    Assignee: MTS Systems Corporation
    Inventors: Byron John Saari, Paul Eric Meybaum
  • Patent number: 10149630
    Abstract: Presented herein are methods of using ferrofluid droplets as mechanical actuators that work across length scales of nanometers to millimeters. These novel actuators and methods of using them can be used to determine mechanical properties of soft materials. The actuators allow calculation of a soft material's viscosity, elastic modulus, and other mechanical properties. The methods and devices of the invention may be employed in biological materials, including live cells and tissues, and may be used to profile the mechanical properties of such living materials or to manipulate biological processes therein.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: December 11, 2018
    Assignee: The Regents of the University of California
    Inventors: Otger Campás, Friedhelm Serwane
  • Patent number: 10132703
    Abstract: A torque sensor terminal block structure includes an electric motor (1) which outputs driving force for driving a load (8), a strain body (3) interposed on a way of a power transmission system from the electric motor (1) to the load (8), a plurality of power detectors (4) which output a detection signal according to strain of the strain body (3) as a signal indicating the driving force, and a terminal block (6) which acquires the detection signal of the power detectors (4) and transmits the output result to a signal processing circuit section (10). The wirings to the signal processing circuit section (10) are twisted spirally as a single stranded wire, and an opening degree between single wirings when the stranded wire extending from the power detectors (4) to the terminal block (6) is unwound, is set to be same for each of the power detectors (4).
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: November 20, 2018
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Yoshiki Kanemoto, Kei Usui, Masahiko Osada, Masaaki Muromachi, Shun Ogiwara
  • Patent number: 10132957
    Abstract: Optomechanical device for actuating and/or detecting movement of a mechanical element, in particular for gravimetric detection. It includes a support with a mechanical element anchored to the support which is designed to move relative to the element, and a device for actuating and/or detecting movement or of variations in frequency of movement of the element. A portion of the device is arranged beneath at least part of the element, between the element and the support. The device includes a fixed optical device with at least one optical waveguide arranged beneath all or part of the element at a determined distance from the element, and which is designed to propagate at least one optical wave having a given wavelength designed to interact with the element. The optical waveguide is at a determined distance from the mechanical element so that the evanescent field of the optical waveguide interacts with the mechanical element.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: November 20, 2018
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Sébastien Hentz, Laurent Duraffourg, Guillaume Jourdan
  • Patent number: 10124842
    Abstract: A tracked drive assembly for a work machine comprises a crawler frame, a crawler track, a drive wheel and a guide wheel, and an arrangement of running wheels coupled to the crawler frame, wherein the tracked drive assembly has a sensor system comprising a sensor for each of the outer running wheels of the running wheel arrangement, which are positioned or located adjacent to the drive wheel and the guide wheel, and at least one other running wheel which is arranged between the outer running wheels, wherein the force introduced into the crawler track via the respective running wheel can be determined by way of the sensor. A method for determining the ground pressure distribution below a work machine includes exposing the sensor to a compressive load at a running wheel.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: November 13, 2018
    Assignee: Manitowoc Crane Group France SAS
    Inventor: Bernd Backes
  • Patent number: 10113938
    Abstract: A test apparatus for simulated testing of a motor vehicle on at least one test bench includes a frame structure in the form of a functional model of the motor vehicle structure. The frame structure includes a front frame section with a functional front axle model, a rear frame section with a functional rear axle model and a middle frame section arranged between the front frame section and the rear section. The length of frame structure is variably adjustable.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: October 30, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Klaus Osterhage
  • Patent number: 10101377
    Abstract: The thermal monitoring of a converter for an electric motor of a vehicle should be improved. Therefore, the invention relates to a method in which the temperature of the converter is measured. In addition, the output power of the converter is determined. The temperature of the converter is estimated using a thermal model of the converter having the output power as an input variable. The estimated temperature is compared with the measured temperature, and a corresponding monitoring signal is provided. Thus, a deviation of the measured temperature for the calculated temperature and thus a corresponding error in the cooling system can be detected even in the partial-load range.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: October 16, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventor: Andreas Kuhn
  • Patent number: 10101254
    Abstract: A detecting apparatus includes: a lifting mechanism section that is provided with a lifting portion for lifting honeycomb structures and a shelf plate; an actual load value measuring section that measures an actual load value; a total load value calculating section that adds up the plurality of measured actual load value; a total load value determining section that compares a standard total weight value of the honeycomb structures and the shelf plate to the total load value and determines whether to satisfy a total load value determining condition; an actual load value determining section that compares the actual load value to the specified load value and determines whether to satisfy an actual load value determining condition; and a shelf-plate crack determining section that determines that the shelf plate is cracked when the total load value determining condition or the actual load value determining condition is not satisfied.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: October 16, 2018
    Assignee: NGK Insulators, Ltd.
    Inventors: Chikashi Ihara, Takeshi Tokunaga, Kazuyuki Yamasawa
  • Patent number: 10094746
    Abstract: An apparatus for extracting an analyte from a liquid sample having a container with an entrance, an exit, and a passage therebetween for passage of a liquid sample containing an analyte, the container having a full diameter bed region and a reduced diameter bed region. The container includes a layered construction extending across the passage, having from top to bottom: (i) an upper flow distributor/support layer, (ii) an upper compression layer, (iii) an extraction layer of microparticulate extraction medium adjacent to the layer (ii), and (iv) a lower compression layer located adjacent to the extraction layer (iii). At least some of the layers are located in the full diameter bed region, and some of the layers are located in the reduced diameter bed region.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: October 9, 2018
    Assignee: TECAN SP, INC.
    Inventors: Philip A. Dimson, Bruce Redmond
  • Patent number: 10094751
    Abstract: A method of determining damage tolerance allowables in a specimen, the method includes applying a cyclic load to a specimen until a first crack emanates from a notch in the specimen, the cyclic load having a maximum load and a minimum load. The method also includes applying a subsequent cyclic load to the specimen until the first crack grows to form a second crack emanating from the first crack, the subsequent cyclic load having the same maximum load but a greater minimum load.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: October 9, 2018
    Assignee: Bell Helicopter Textron Inc.
    Inventors: Xiaoming Li, Bogdan R. Krasnowski
  • Patent number: 10082435
    Abstract: A pressure sensor according to an embodiment includes: a support member; a membrane supported by the support and having flexibility; and a strain detection element formed on the membrane. The strain detection element includes a first magnetic layer formed on the membrane and having a magnetization, a second magnetic layer having a magnetization, and an intermediate layer formed between the first magnetic layer and the second magnetic layer. A direction of at least one of the magnetization of the first magnetic layer and the magnetization of the second magnetic layer changes relatively to that of the other depending on a strain of the membrane. Moreover, the membrane includes an oxide layer that includes aluminum.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: September 25, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuaki Okamoto, Akio Hori, Hideaki Fukuzawa, Yoshihiko Fuji, Akiko Yuzawa
  • Patent number: 10067077
    Abstract: A sample manipulator includes a drive system, a pair of flexure plates, and piezoelectric actuators. The drive system preferably includes a pair of drive pulleys on opposite sides of a driven pulley and coupled to the driven pulley by a drive belt. The sample rotates around a rotational axis with the driven pulley. The driven pulley is preferably driven by a pair of drive belts, one being located above the sample, and the other being located below the sample. Fluid bearings provide improved rotation of the driven pulley. The flexure plates are preferably monolithic with a high number of machined flex veins with the side of a tapered threaded screw being used to create the high force required to bend many flexures at the same time for sample motion and to provide fine, precise sub-micron motion control. The piezoelectric actuators provide high-precision control of the load on the sample.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: September 4, 2018
    Assignee: PulseRay Inc.
    Inventors: Basil Eric Blank, Jay Schuren, Paul Shade, Todd Turner
  • Patent number: 10060259
    Abstract: A device and method to quantitatively measure concentrations of volatile organic compound vapors below the ground surface using a preferably “fully” passive device that is placed in a drilled or bored hole for a specified period of time, wherein the sampler constrains the uptake rate to match values that minimize or eliminate the starvation effect and provide acceptable sensitivity for most soil types as calculated via mathematical models.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: August 28, 2018
    Assignee: Geosyntec Consultants, Inc.
    Inventors: Todd Arthur McAlary, Suresh Seethapathy, Tadeusz Gorecki
  • Patent number: 10054558
    Abstract: A container test system includes a test chamber in which a container may be located for testing, for instance, for assessing insulative properties of a container. In the test chamber, the outside of the container is thermally treated, temperature of the air outside the container is measured, and temperature of a liquid inside the container is measured. A related testing method is also disclosed.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: August 21, 2018
    Assignee: Owens-Brockway Glass Container Inc.
    Inventors: David Kisela, Jared Morello, Gary Myers, Daniel S. Sabo
  • Patent number: 10048183
    Abstract: An integrated-style shear apparatus for testing a rock structural plane includes a frame system, a vertical loading system, a horizontal loading system, and a shearing system. Both the vertical loading system and the horizontal loading system are fixed on the frame system, and the shearing system is installed inside the frame system. The shearing system is used to prepare the sample of structural plane and actualize the shear test. The vertical loading system and the horizontal loading system are used to provide normal stress and shear stress for the shearing system respectively.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: August 14, 2018
    Assignee: Powerchina Huadong Engineering Corporation Limited
    Inventors: Weida Ni, Zhigang Shan, Anchi Shi, Jingyong Wang, Wanqiang Cheng, Miaojun Sun
  • Patent number: 10039231
    Abstract: A system for measuring plant attributes comprises a plant attribute sensor (103, 108, 110); a digital a priori plant location map (118); and an ECU (126) coupled to the plant attribute sensor (103, 108, 110) and configured to retrieve and use the a priori plant map and to anticipate a plant measurement based upon the a priori plant map and to use that anticipation to improve the accuracy of the plant measurement.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: August 7, 2018
    Assignee: Deere & Company
    Inventors: Noel W. Anderson, Niels Dybro