Abstract: A spatial light modulator including a pair of transparent insulating substrates each having a transparent conducting electrode, the substrates forming a top layer and a bottom layer, a photoconductive layer, a liquid crystal layer and a reflection layer being present between the top and bottom layers, wherein the photoconductive layer comprises a first amorphous semiconductor layer and a second amorphous semiconductor layer disposed in order on the bottom layer, and the first amorphous semiconductor layer and the second amorphous semiconductor layer have different refractive indices from each other.
Type:
Grant
Filed:
September 2, 1994
Date of Patent:
December 10, 1996
Assignee:
Matsushita Electric Industrial Co., Ltd.
Inventors:
Koji Akiyama, Akifumi Ogiwara, Hisahito Ogawa
Abstract: An active matrix substrate according to the present invention comprises an insulating substrate; a pixel electrode formed on the insulating substrate; a signal line for supplying a signal charge to the pixel electrode; a two-terminal nonlinear device including a lower electrode formed on the insulating substrate, an insulator covering the lower electrode, and an upper electrode formed on the insulator, the device changing a current which flows through the insulator in accordance with a voltage applied to the lower electrode and the upper electrode; and an island portion for connecting the upper electrode to the pixel electrode, the island portion making ohmic contact with each of the upper electrode and the pixel electrode.
Abstract: An apparatus and method for enhancing the signal-to-noise ratio of an input signal which divides the input signal into a plurality of divided signals of equal power, introduces a delay into a corresponding one of the plurality of divided signals, mixes together pairs of the plurality of delayed divided signals, and sums the mixed signals. The apparatus and method of the present invention may be employed in a signal detector to improve the sensitivity of the signal detector.
Abstract: A folded cascode operational amplifier using an improved gain enhancement technique is described. The folded cascode includes an input section, a cascode current mirror section, and a cascode current section. A first fully-differential operational amplifier is coupled to the cascode current mirror section to provide improved gain enhancement thereto and a second fully-differential operational amplifier is coupled to the cascode current source section to provide improved gain enhancement thereto. The differential inputs of the first fully-differential operational amplifier are coupled to feedback nodes of the cascode current mirror section and the differential outputs of the first fully-differential operational amplifier are coupled to control nodes of the cascode current mirror section.
Abstract: There is provided a gain control Gilbert amplifier circuit which can be more easily controlled for variation in the gain characteristics of each predriver integrated circuit for primary color image signals R, G, and B, and the variation caused by light emitting efficiency than the prior art. The gain control Gilbert amplifier circuit also operates in a wider frequency range than the conventional circuits, and has a large S/N ratio. One embodiment of the amplifier circuit comprises a grounded-base transistor amplifier circuit having rectifier elements, reference voltage sources, diodes connected to a differentially paired transistors. The rectifier elements are controlled so that a ratio of currents output from constant-current sources can be selected to enable the frequency characteristic of the amplifier circuit to expand by a frequency range.