Patents Examined by Tri V. Nguyen
  • Patent number: 11717989
    Abstract: Preparing hybrid-treated plastic particles from waste plastic includes combining waste plastic particles with bio-oil to yield a mixture, irradiating the mixture with microwave radiation to yield oil-treated plastic particles, and contacting the oil-treated plastic particles with carbon-containing nanoparticles to yield hybrid-treated plastic particles. The hybrid-treated plastic particles have a bio-oil modified surface and a coating comprising carbon-containing nanoparticles on the bio-oil modified surface of the plastic particle. In some examples, a diameter of the plastic particle is in a range between 250 m and 750 m, and a thickness of the coating is in a range of 1 nm to 20 nm. A modified binder includes an asphalt binder or a concrete binder and a multiplicity of the treated plastic particles. The modified binder typically includes 5 wt % to 25 wt % of the hybrid-treated plastic particles.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: August 8, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Elham Fini, Sk Faisal Kabir
  • Patent number: 11712871
    Abstract: A method of fabricating a panel includes laying up a first laminate on a tooling surface, laying a first layer of thermoplastic on an inner surface of the first laminate, laying a large cell carbon core on the first layer of thermoplastic, laying a second layer of thermoplastic across the large cell carbon core, laying a second laminate on the second layer of thermoplastic, creating a sealed core pocket by bonding the edges of the first and second layers of the thermoplastic surrounding a perimeter of the core, increasing pressure within the core pocket, increasing pressure on the outer surface of the second laminate, heating the panel to a desired curing temperature, and maintaining the increased pressures and temperature for a desired curing duration.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: August 1, 2023
    Assignee: Textron Innovations Inc.
    Inventors: James Everett Kooiman, David Carlson, Douglas K. Wolfe, Jonathan Alexander Freeman
  • Patent number: 11708276
    Abstract: Methods are disclosed for dispersing nanoparticles in solvents, involving the use of a cationic species and an anionic species, where at least one of the ionic species is soluble in the nonpolar solvent and the other ionic species has a relatively strong affinity for the surface of the nanoparticles. The cationic species and the anionic species together form a cluster of ion pairs shielding the nanoparticles and enhancing their dispersibility in the nonpolar solvent.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: July 25, 2023
    Assignee: UTI LIMITED PARTNERSHIP
    Inventors: Elsayed Abdelfatah, Steven Bryant
  • Patent number: 11699792
    Abstract: A conductive material, and a method for preparing the same are provided. The conductive material has a structure where a plurality of graphene sheets are interconnected, wherein an oxygen content is 1 wt % or higher based on the total weight of the conductive material, and a D/G peak ratio is 2.0 or less when the Raman spectrum is measured.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: July 11, 2023
    Inventors: Tae Gon Kim, Seul Ki Kim, Wang Mo Jung, Sang Wook Lee
  • Patent number: 11685846
    Abstract: Provided is a transparent conducting film having a preferable optical property, a preferable electrical property, and further, a superior durability of folding. The transparent conducting film comprises a transparent substrate and a transparent conducting layer formed on at least one of main faces of the transparent substrate, wherein the transparent conducting layer contains a binder resin and a conducting fiber, a cut portion of the transparent conducting film has a straightness of 0.050 mm or less. Preferably, the transparent substrate is a resin film having an elongated resin film or cut out from an elongated film, and can be folded in with a folding axis in the direction perpendicular to the longitudinal direction of the elongated resin film.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: June 27, 2023
    Assignee: SHOWA DENKO K. K.
    Inventors: Shigeru Yamaki, Shuhei Yoneda
  • Patent number: 11686019
    Abstract: The purpose of the present disclosure is to provide a CNT fiber that is constituted of aligned carbon nanotubes (CNTs), is thin, has little irregularity in thickness, has excellent winding properties when undergoing coiling processing, and has superior conductivity. Provided is a CNT fiber constituted of carbon nanotubes (CNTs) having a thickness of 0.01 ?m-3 mm, having a coefficient of variation for irregularity in thickness of 0.2 or less, having a distribution rate a for deviation from roundness of 40% or greater, and a distribution rate b of 70% or greater. Also provided is a method for manufacturing the CNT fiber.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: June 27, 2023
    Assignees: National Institute of Advanced Industrial Science and Technology, Asahi Kasei Kabushiki Kaisha
    Inventors: Ken Mukai, Shuhei Ikenaga, Kinji Asaka, Toru Morita, Yujin Motoyama, Yuta Saito
  • Patent number: 11680243
    Abstract: Various embodiments disclosed relate to conductive graphene matrix-encapsulated cells. A matrix-encapsulated cell includes an encapsulating polymer matrix including a biopolymer and graphene. The matrix-encapsulated cell also includes one or more of the cells encapsulated within the encapsulating polymer, wherein the graphene directly contacts at least some of the cells. The matrix encapsulating the one or more cells is electrically conductive.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: June 20, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Nicole Nastaran Hashemi, Reza Montazami, Marilyn Christine McNamara, Jasmin Okuzono
  • Patent number: 11679981
    Abstract: Provided is a composite of a CNT assembly including a plurality of carbon nanotubes (CNTs) and at least one metalcone material, the composite being tunable, by a vapor phase chemical modification, to adopt one or more collective properties selected from mechanical, chemical, physical or electrical properties.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: June 20, 2023
    Assignee: YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM LTD.
    Inventor: Roie Yerushalmi
  • Patent number: 11673103
    Abstract: The present disclosure relates to a process to produce aqueous dispersions of graphene stabilized by cellulose, offering an alternative to the current methods of dispersion of graphene. The present process provides the advantages that it uses biodegradable cellulose compatible with the environment and can be used in industrial processes in alkaline medium or in the absence of alkali; and when graphene is stabilized with cellulose in alkaline medium it becomes unstable when in contact with natural waters, thus precipitating and being easily removed or concentrated. In other embodiments, solids obtained by drying of the dispersions, once dried, can be redispersed in aqueous alkaline solution.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: June 13, 2023
    Inventors: Elisa Ferreira, Fernando Galembeck
  • Patent number: 11642627
    Abstract: A nanocarbon separation device includes a separation tank which is configured to accommodate a dispersion liquid including a nanocarbon, a first electrode that is provided at an upper part in the separation tank, a second electrode that is provided at a lower part in the separation tank, and a plurality of electrode tubes that extend in the separation tank in a height direction of the separation tank. The second electrode is disposed at a lower end of the electrode tubes.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: May 9, 2023
    Assignee: NEC CORPORATION
    Inventor: Mayumi Kosaka
  • Patent number: 11637286
    Abstract: The present invention provides a carbonaceous material suitable for a negative electrode active material for non-aqueous electrolyte secondary batteries (e.g., lithium ion secondary batteries, sodium ion secondary batteries, lithium sulfur batteries, lithium air batteries) having high charge/discharge capacities, and preferably high charge/discharge efficiency and low resistance, a negative electrode comprising the carbonaceous material, a non-aqueous electrolyte secondary battery comprising the negative electrode, and a production method of the carbonaceous material. The present invention relates to a carbonaceous material having a nitrogen content obtained by elemental analysis of 3.5 mass % or more, a ratio of nitrogen content and hydrogen content (RN/H) of 6 or more and 100 or less, a ratio of oxygen content and nitrogen content (RO/N) of 0.1 or more and 1.0 or less, and a carbon interplanar spacing (d002) observed by X-ray diffraction measurement of 3.70 ? or more.
    Type: Grant
    Filed: July 4, 2018
    Date of Patent: April 25, 2023
    Assignee: KURARAY CO., LTD.
    Inventors: Takafumi Izawa, Kengo Tachikawa, Hideharu Iwasaki
  • Patent number: 11624000
    Abstract: This invention discloses formulations of mutually compatible sets of graphene, graphene-carbon, metal and dielectric inks for the fabrication of high performance membrane touch switches (MTS). The compositions of these inks are optimized to achieve higher degree of compatibility with highly engineered polymeric substrates, thereby offering a holistic solution for fabricating high-performance MTS. These sets of materials can also be used for fabrication of sensors, biosensors and RFIDs on flexible substrates, such as polymers and papers.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: April 11, 2023
    Assignees: Alpha Assembly Solutions Inc., MacDermid Autotype Limited
    Inventors: Nirmalya Kumar Chaki, Chetan Pravinchandra Shah, Barun Das, Supriya Devarajan, Siuli Sarkar, Rahul Raut, Bawa Singh, Anubhav Rustogi, Anna Jane Harris, Keith Paul Parsons, Jeffrey William Braham
  • Patent number: 11613612
    Abstract: A fluororubber composition that is a kneaded mixture of a carbon nanotube masterbatch comprising 4 to 20 parts by weight of multilayer carbon nanotubes, which are fibrous carbon nanostructures that do not contain monolayer carbon nanotubes, based on 100 parts by weight of a fluororubber polymer, and a fluororubber raw material comprising at least a fluororubber polymer and a reinforcing filler, in which the multilayer carbon nanotubes are compounded in an amount of 0.5 to 6 wt. % in the kneaded mixture. The kneading is performed using a roll or a kneader when the fluororubber composition is produced. The fluororubber composition can provide a fluororubber crosslinked molded article that exhibits abrasion resistance and blister resistance.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: March 28, 2023
    Assignee: NOK CORPORATION
    Inventors: Hideyuki Murakami, Shunsuke Abe
  • Patent number: 11608269
    Abstract: The present teachings provide methods for providing populations of single-walled carbon nanotubes that are substantially monodisperse in terms of diameter, electronic type, and/or chirality. Also provided are single-walled carbon nanotube populations provided thereby and articles of manufacture including such populations.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: March 21, 2023
    Assignee: Northwestern University
    Inventors: Michael S. Arnold, Mark C. Hersam, Samuel I. Stupp
  • Patent number: 11597192
    Abstract: A multilayer radar-absorbing laminate includes three juxtaposed blocks. A first electrically conductive block is arranged toward the inside of the aircraft in use. A second electromagnetic intermediate absorber block has a layer of electrically non-conductive fiber sheets is permeated by graphene-based nanoplatelets to achieve a periodic and electromagnetically subresonant layer, the conductive layers containing graphene nanoplatelets alternating with non-conductive layers. A third block of electrically non-conductive material is arranged towards the outside and forms part of the outer surface of the aircraft. The second block is produced by depositing on the fiber sheets a suspension of graphene nanoplatelets in a polymeric mixture, with controlled penetration of the graphene nanoplatelets into the fiber sheets. A plurality of dry fiber sheets sprayed with the suspension of graphene nanoplatelets is superimposed.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: March 7, 2023
    Assignee: LEONARDO S.P.A.
    Inventors: Luigi Pisu, Gianni Iagulli, Maria Sabrina Sarto, Fabrizio Marra, Julian Lecini, Alessio Tamburrano
  • Patent number: 11591716
    Abstract: An ultra-hard carbon film is formed by the uniaxial compression of thin films of graphene. The graphene films are two or three layers thick (2-L or 3-L). High pressure compression forms a diamond-like film and provides improved properties to the coated substrates.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: February 28, 2023
    Assignees: Research Foundation of the City University of New York, New York University
    Inventors: Yang Gao, Tengfei Cao, Filippo Cellini, Elisa Riedo, Angelo Bongiorno
  • Patent number: 11565939
    Abstract: In the silicon core wire according to a first aspect of the present invention, a male thread part formed at one end of a first thin silicon rod and a female thread part formed at one end of a second thin silicon rod may be screwed together and fastened. In the silicon core wire according to a second aspect of the present invention, a thread part formed at one end of a first thin silicon rod and a thread part formed at one end of a second thin silicon rod may be screwed together and fastened via an adapter with thread parts formed at both ends.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: January 31, 2023
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Naruhiro Hoshino, Tetsuro Okada, Masahiko Ishida
  • Patent number: 11559769
    Abstract: A nanocarbon separation device includes a first porous structure configured to hold a solution containing a surfactant, a second porous structure configured to hold a dispersion medium, a holding part provided between the first porous structure and the second porous structure and configured to hold the dispersion liquid containing the nanocarbons and the surfactant and having a smaller content of the surfactant than that of the solution, a separation tank in which the first porous structure, the holding part and the second porous structure are disposed and accommodated in an order of the first porous structure, the holding part and the second porous structure, a first electrode provided on a lower section of the first porous structure, and a second electrode provided on an upper section of the second porous structure.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: January 24, 2023
    Assignee: NEC CORPORATION
    Inventor: Mayumi Kosaka
  • Patent number: 11542381
    Abstract: A silver-coated resin particle having a resin particle and a silver coating layer provided on a surface of the resin particle, in which an average value of a 10% compressive elastic modulus is in a range of 500 MPa or more and 15,000 MPa or less and a variation coefficient of the 10% compressive elastic modulus is 30% or less.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: January 3, 2023
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Materials Electronic Chemicals Co., Ltd.
    Inventors: Hiroto Akaike, Kazuhiko Yamasaki, Kensuke Kageyama, Hirokazu Tsukada
  • Patent number: 11545283
    Abstract: An anisotropic conductive film (ACF) structure and a hot-pressing method and a hot-pressing assembly thereof are provided. The ACF structure includes an ACF and a copper/gold foil surface layer as a substrate. The ACF structure is hot-pressed by a hot-pressing method, which includes the following steps: allowing, when the ACF is in a molten state, the copper/gold foil surface layer and a bonded part to be conductive respectively to generate a magnetic field around to enhance the attraction of the copper/gold foil surface layer and the bonded part to conductive particles inside the ACF; and applying, when the ACF is in a curing stage, a closed circuit to ends of the copper/gold foil surface layer and the bonded part to perform real-time detection on the ACF to ensure the effectiveness of the hot pressing.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: January 3, 2023
    Assignee: Jiangsu Telilan Coaling Technology Co., Ltd.
    Inventors: Liang Zheng, Zheng Xu, Shuibing Yan