Patents Examined by Tu Tu V Ho
  • Patent number: 11456304
    Abstract: A semiconductor structure and a forming method thereof are provided.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: September 27, 2022
    Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventor: Nan Wang
  • Patent number: 11456223
    Abstract: Present disclosure provides a semiconductor stress monitoring structure, including a substrate, first conductive segments, second conductive segments, and a sensing structure. The first conductive segments are over the substrate and arranged parallel to each other. The second conductive segments are arranged below the first conductive segments and parallel to each other. The sensing structure is proximate to the substrate. The sensing structure is configured to respond to a stress caused by the first conductive segments and the second conductive segments and generate a monitoring signal.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: September 27, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventor: Chien-Mao Chen
  • Patent number: 11444196
    Abstract: A method of forming a semiconductor structure includes: providing a substrate including an upper surface, a gate structure disposed on the upper surface, a spacer disposed on a sidewall of the gate structure, a first region in the substrate, and a second region in the substrate; masking the second region and amorphizing the first region, such that an amorphous layer is formed in the first region; depositing a stress layer on the substrate, wherein the stress layer conformally covers the gate structure, the spacer, the first region and the second region; and recrystallizing the amorphous layer, thereby forming a dislocation in the first region.
    Type: Grant
    Filed: December 13, 2020
    Date of Patent: September 13, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Po-Yu Yang
  • Patent number: 11444195
    Abstract: A method of forming a semiconductor structure is disclosed. First, a substrate is provided, including an upper surface. A gate structure is disposed on the upper surface. A spacer is disposed on a sidewall of the gate structure. A first region is located in the substrate. A second region is located in the substrate. The first region and the second region are dry etched to form a first trench and a second trench, respectively. The second region is masked. The first region is then wet etched through the first trench to form a widened first trench. A stress-inducing layer is then formed in the widened first trench and in the second trench.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: September 13, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Po-Yu Yang
  • Patent number: 11444071
    Abstract: An integrated circuit disclosed here includes several cell rows extending in a first direction and a multi-bit cell having several bit cells included in the cell rows. The bit cells include M bit cells, and an output signal of a N-th bit cell of the M bit cells is an input signal of a (N+1)-th bit cell of the M bit cells, N and M being positive integers. A first bit cell of the bit cells and a M-th bit cell of the bit cells are arranged diagonally in different cell rows in the multi-bit cell, and the N-th bit cell and the (N+1)-th bit cell are arranged diagonally in different cell rows in the multi-bit cell.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: September 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shao-Lun Chien, Po-Chun Wang, Hui-Zhong Zhuang, Chih-Liang Chen, Li-Chun Tien
  • Patent number: 11437329
    Abstract: The present disclosure relates to integrated circuits, and more particularly, to an anti-tamper x-ray blocking package for secure integrated circuits and methods of manufacture and operation. In particular, the present disclosure relates to a structure including: one or more devices on a front side of a semiconductor material; a plurality of patterned metal layers under the one or more devices, located and structured to protect the one or more devices from an active intrusion; an insulator layer between the plurality of patterned metal layers; and at least one contact providing an electrical connection through the semiconductor material to a front side of the plurality of metals.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: September 6, 2022
    Assignee: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Johnatan A. Kantarovsky, Vibhor Jain, Siva P. Adusumilli, Ajay Raman, Sebastian T. Ventrone, Yves T. Ngu
  • Patent number: 11437294
    Abstract: Embodiments disclosed herein include electronics packages with improved thermal pathways. In an embodiment, an electronics package includes a package substrate. In an embodiment, the package substrate comprises a plurality of backside layers, a plurality of front-side layers, and a core layer between the plurality of backside layers and the plurality of front-side layers. In an embodiment, an inductor is embedded in the plurality of backside layers. In an embodiment, a plurality of bumps are formed over the front-side layers and thermally coupled to the inductor. In an embodiment, the plurality of bumps are thermally coupled to the core layer by a plurality of vias.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: September 6, 2022
    Assignee: Intel Corporation
    Inventors: Sameer Shekhar, Amit Kumar Jain, Kaladhar Radhakrishnan, Jonathan P. Douglas, Chin Lee Kuan
  • Patent number: 11437389
    Abstract: Some embodiments include an integrated assembly having a memory array region which includes channel material pillars extending through a stack of alternating conductive and insulative levels. A second region is adjacent the memory array region. A conductive expanse is within the memory array region and electrically coupled with the channel material of the channel material pillars. A panel extends across the memory array region and the second region. The panel separates one memory block region from another. The panel has a first portion over the conductive expanse, and has a second portion adjacent the first portion. The panel has a bottom surface. A first segment of the bottom surface is adjacent an upper surface of the conductive expanse. A segment of the bottom surface within the second portion is elevationally offset relative to the first segment. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: September 6, 2022
    Assignee: Micron Technology, Inc.
    Inventor: Shuangqiang Luo
  • Patent number: 11437432
    Abstract: An embedded device includes a first insulation layer, a second insulation layer on the first insulation layer, a lower electrode contact in the first insulation layer in a first region, a first structure, having a lower electrode, a magnetic tunnel junction, and an upper electrode, in the second insulation layer and contacting the lower electrode contact, a first metal wiring structure through the first and second insulation layers in a second region, a third insulation layer on the second insulation layer, a bit line structure through the third insulation layer and the second insulation layer in the first region, the bit line structure having a first height and contacting the upper electrode, and a second metal wiring structure through the third insulation layer in the second region, the second metal wiring structure contacting the first metal wiring structure, and having a second height lower than the first height.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: September 6, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kilho Lee, Gwanhyeob Koh, Woojin Kim
  • Patent number: 11430779
    Abstract: Disclosed are a semiconductor device and a method of fabricating the same. The method includes placing a standard cell, resizing a power via pattern in such a way that the power via pattern has a different width from a width of other via pattern, and applying different design rules to the power via pattern and the other via pattern, respectively, to perform a routing operation on the standard cell.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: August 30, 2022
    Inventors: Jaewan Yang, Wootae Kim, Hyungock Kim, Sangdo Park, Jun Seomun
  • Patent number: 11430947
    Abstract: A first conductive layer is patterned and trimmed to form a sub 30 nm conductive via on a first bottom electrode. The conductive via is encapsulated with a first dielectric layer and planarized to expose a top surface of the conductive via. A second conductive layer is deposited over the first dielectric layer and the conductive via. The second conductive layer is patterned to form a sub 60 nm second conductive layer wherein the conductive via and second conductive layer together form a T-shaped second bottom electrode. MTJ stacks are deposited on the T-shaped second bottom electrode and on the first bottom electrode wherein the MTJ stacks are discontinuous. A second dielectric layer is deposited over the MTJ stacks and planarized to expose a top surface of the MTJ stack on the T-shaped second bottom electrode. A top electrode contacts the MTJ stack on the T-shaped second bottom electrode plug.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: August 30, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi Yang, Dongna Shen, Yu-Jen Wang
  • Patent number: 11417705
    Abstract: A memory cell is disclosed. The memory cell includes a word line contact, a cylindrical electrode having a top region and a bottom region, and RRAM material covering the surface of the cylindrical electrode from the top region to the bottom region. A select transistor contact is coupled to the bottom region of the cylindrical electrode.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: August 16, 2022
    Assignee: Intel Corporation
    Inventors: Brian Doyle, Prashant Majhi, Elijah Karpov, Ravi Pillarisetty, Ashishek Sharma
  • Patent number: 11417832
    Abstract: The present disclosure provides a semiconductor structure, including a substrate, including a first region and a second region adjacent to the first region, a magnetic tunnel junction (MTJ) over the first region, a spacer on a sidewall of the MTJ, a hard mask over the MTJ, a first dielectric layer laterally surrounding the spacer and the hard mask, a top electrode over the hard mask, and an etch stop stack laterally surrounding the top electrode.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: August 16, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Feng Yin, Tai-Yen Peng, An-Shen Chang, Han-Ting Tsai, Qiang Fu, Chung-Te Lin
  • Patent number: 11417673
    Abstract: A microelectronic device comprises a stack structure comprising alternating conductive structures and insulative structures arranged in tiers, the tiers individually comprising one of the conductive structures and one of the insulative structures, first support pillar structures extending through the stack structure within a first region of the microelectronic device, the first support pillar structures electrically isolated from a source structure underlying the stack structure, second support pillar structures extending through the stack structure within a second region of the microelectronic device, the second support pillar structures comprising an electrically conductive material in electrical communication with the source structure, and bridge structures extending between at least some neighboring first support pillar structures of the first support pillar structures. Related memory devices, electronic systems, and methods are also described.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: August 16, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout
  • Patent number: 11417638
    Abstract: A semiconductor structure includes a semiconductor package and a connector. The semiconductor package includes a die and a redistribution structure. The redistribution structure is disposed over the die, and includes a plurality of conductive patterns stacking on one another and electrically connected to the die. The connector is disposed on the redistribution structure, and includes a connecting element. The connecting element penetrates the conductive patterns and is electrically connected to the die.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: August 16, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Hui Lai, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Tin-Hao Kuo
  • Patent number: 11417540
    Abstract: In described examples, a method for encapsulating a semiconductor device includes the steps of immersing a layer of the semiconductor device in a liquid encapsulation material, irradiating portions of the liquid encapsulation material to polymerize the liquid encapsulation material, and moving the semiconductor device further from a surface of the liquid encapsulation material proximate to the layer. Immersing the semiconductor device is performed to cover a layer of the device in the liquid encapsulation material. Targeted locations of the liquid encapsulation material covering the layer are irradiated to form solid encapsulation material. The semiconductor device is moved from a surface of the liquid encapsulation material so that a new layer of the semiconductor device and/or of the solid encapsulation material can be covered by the liquid encapsulation material.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: August 16, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Daniel Lee Revier
  • Patent number: 11411173
    Abstract: Material stacks for perpendicular spin transfer torque memory (pSTTM) devices, pSTTM devices and computing platforms employing such material stacks, and methods for forming them are discussed. The material stacks include a cladding layer of predominantly tungsten on a protective layer, which is in turn on an oxide capping layer over a magnetic junction stack. The cladding layer reduces oxygen dissociation from the oxide capping layer for improved thermal stability and retention.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: August 9, 2022
    Assignee: Intel Corporation
    Inventors: Angeline Smith, Justin Brockman, Tofizur Rahman, Daniel Ouellette, Andrew Smith, Juan Alzate Vinasco, James ODonnell, Christopher Wiegand, Oleg Golonzka
  • Patent number: 11408134
    Abstract: In one aspect, a method of controlling an operation of a compactor during a paving operation may include obtaining thermal image data and position data of an asphalt mat using a measuring device on a paving machine, and determining, using a controller, whether a person is on the asphalt mat based on a temperature range and the thermal image data. The method also includes determining, using the controller, a distance between the person and the compactor using the obtained position data and a position of the compactor, and generating, using the controller, a signal for reducing a speed of the compactor when the determined distance between the person and the compactor is less than a maintain speed threshold distance. In other aspects, a related system is provided for controlling a compactor during a paving operation.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: August 9, 2022
    Assignee: Caterpillar Paving Products Inc.
    Inventors: John L. Marsolek, Jacob J. McAlpine, Joshua D. Keyes, Corey B. Hanback
  • Patent number: 11410986
    Abstract: A semiconductor device includes an electrical circuit having a first set of circuit elements, wherein the electrical circuit is in a circuit area on a first side of a substrate, and a first set of conductive pillars over the first side of the substrate. In the semiconductor device, a first conductive rail electrically connects to each of the first set of conductive pillars, wherein each of the first set of conductive pillars is electrically connected to each of the first set of circuit elements by the first conductive rail; and a first power cell extending through the substrate, wherein the first power cell includes a first number of power pillars extending through the substrate, wherein each of the first number of power pillars electrically connects to the first conductive rail in parallel.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: August 9, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Chieh Yang, Chung-Ting Lu, Yung-Chow Peng
  • Patent number: 11411047
    Abstract: An apparatus is provided which comprises: a magnetic junction (e.g., a magnetic tunneling junction or spin valve). The apparatus further includes a structure (e.g., an interconnect) comprising spin orbit material, the structure adjacent to the magnetic junction; first and second transistors. The first transistor is coupled to a bit-line and a first word-line, wherein the first transistor is adjacent to the magnetic junction. The second transistor is coupled to a first select-line and a second word-line, wherein the second transistor is adjacent to the structure, wherein the interconnect is coupled to a second select-line, and wherein the magnetic junction is between the first and second transistors.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: August 9, 2022
    Assignee: Intel Corporation
    Inventors: Sasikanth Manipatruni, Christopher Wiegand, Tanay Gosavi, Ian Young