Abstract: Systems, methods, and devices for super resolution and color motion artifact correction in a pulsed fluorescence imaging system are disclosed. A method includes actuating an emitter to emit a plurality of pulses of electromagnetic radiation and sensing reflected electromagnetic radiation resulting from the plurality of pulses of electromagnetic radiation with a pixel array of an image sensor to generate a plurality of exposure frames. The method includes detecting motion across two or more sequential exposure frames of the plurality of exposure frames, compensating for the detected motion, and combining the two or more sequential exposure frames to generate an image frame. The method is such that at least a portion of the plurality of pulses of electromagnetic radiation emitted by the emitter comprises one or more of electromagnetic radiation having a wavelength from about 795 nm to about 815 nm.
Abstract: Systems, methods, and devices for super resolution and color motion artifact correction in a pulsed fluorescence imaging system are disclosed. A method includes actuating an emitter to emit a plurality of pulses of electromagnetic radiation and sensing reflected electromagnetic radiation resulting from the plurality of pulses of electromagnetic radiation with a pixel array of an image sensor to generate a plurality of exposure frames. The method includes detecting motion across two or more sequential exposure frames of the plurality of exposure frames, compensating for the detected motion, and combining the two or more sequential exposure frames to generate an image frame. The method is such that at least a portion of the plurality of pulses of electromagnetic radiation emitted by the emitter comprises one or more of electromagnetic radiation having a wavelength from about 770 nm to about 790 nm.
Abstract: A machine vision system that uses an imager to capture an optical image of a target object that may contain a liquid. The target object is illuminated by an illumination source positioned oppositely from the imager and a predetermined pattern is positioned between the illumination source and the target object so that the imager will capture optical images of the background pattern through any liquid positioned in the target object. A processor is programmed to analyze captured images to detect any distortions of the pattern that are attributable to the presence of a liquid in the target object.
Abstract: A depth camera assembly (DCA) for depth sensing of a local area. The DCA includes a transmitter, a receiver, and a controller. The transmitter illuminates a local area with outgoing light in accordance with emission instructions. The transmitter includes a fine steering element and a coarse steering element. The fine steering element deflects one or more optical beams at a first deflection angle to generate one or more first order deflected scanning beams. The coarse steering element deflects the one or more first order deflected scanning beams at a second deflection angle to generate the outgoing light projected into the local area. The receiver captures one or more images of the local area including portions of the outgoing light reflected from the local area. The controller determines depth information for one or more objects in the local area based in part on the captured one or more images.
Type:
Grant
Filed:
January 9, 2020
Date of Patent:
March 1, 2022
Assignee:
Facebook Technologies, LLC
Inventors:
Michael Hall, Qing Chao, Byron Taylor, Xinqiao Liu
Abstract: A method for video decoding includes determining, for a current block that is a non-square block, whether an angular intra prediction mode for the current block is a wide angle mode that is in a direction outside of a range of directions that spans a bottom left diagonal direction and top right diagonal direction of the current block. The method further includes, in response to determining that the angular intra prediction mode is the wide angle mode, enabling an intra smooth filter and applying the enabled intra smoothing filter to blocks neighboring the current block to generate filtered blocks. The method further includes performing intra prediction based on the filtered blocks to decode the current block.
Type:
Grant
Filed:
January 24, 2020
Date of Patent:
February 1, 2022
Assignee:
TENCENT AMERICA LLC
Inventors:
Liang Zhao, Xin Zhao, Xiang Li, Shan Liu
Abstract: A method of processing a video bitstream includes determining a motion precision set based on coding information of a current block. A conversion between a video block and a coded representation of the video block is performed based on the motion precision set. The conversion corresponds to a reconstruction of the current block. In some example aspects, a motion vector difference (MVD) precision of a current block from a motion precision set is determined based on a selected motion precision set and a MVD precision index. A conversion between a video block and a coded representation of the video block using an MVD is performed based on the MVD precision. The MVD represents a difference between a predicted motion vector and an actual motion vector used during motion compensation processing.
Type:
Grant
Filed:
July 28, 2020
Date of Patent:
December 7, 2021
Assignees:
BEIJING BYTEDANCE NETWORK TECHNOLOGY CO., LTD., BYTEDANCE INC.
Inventors:
Hongbin Liu, Li Zhang, Kai Zhang, Yue Wang
Abstract: A spectral imaging device (12) includes an image sensor (28), a tunable light source (14), an optical assembly (17), and a control system (30). The optical assembly (17) includes a first refractive element (24A) and a second refractive element (24B) that are spaced apart from one another by a first separation distance. The refractive elements (24A) (24B) have an element optical thickness and a Fourier space component of the optical frequency dependent transmittance function. Further, the element optical thickness of each refractive element (24A) (24B) and the first separation distance are set such that the Fourier space components of the optical frequency dependent transmittance function of each refractive element (24A) (24B) fall outside a Fourier space measurement passband.
Abstract: This disclosure provides systems, methods, and apparatuses for high dynamic range (HDR) processing. In one aspect, an example HDR processing device may process a first exposure frame and a second exposure frame during a first capture sequence. The device may also generate a first HDR image from the first exposure frame and the second exposure frame at an end of the first capture sequence. The device may also process a third exposure frame during a second capture sequence that at least partially overlaps in time with the first capture sequence. The device may also generate a second HDR image from the second exposure frame and the third exposure frame.
Abstract: A metrology system and metrology methods are disclosed. The metrology system includes an illumination sub-system, a collection sub-system, a detector, and a controller. The controller is configured to receive an image of an overlay target on a sample, determine an apparent overlay between two working zones along a measurement direction based on the image, and calculate an overlay between the two sample layers by dividing the apparent overlay by a Moiré gain to compensate for Moiré interference.
Type:
Grant
Filed:
July 21, 2020
Date of Patent:
November 2, 2021
Assignee:
KLA Corporation
Inventors:
Yoel Feler, Mark Ghinovker, Evgeni Gurevich, Vladimir Levinski, Alexander Svizher
Abstract: An imaging system comprises a rolling shutter sensor that captures images of a scene, an illumination source that continuously illuminates the scene, a time-varying illumination source that illuminates the scene, and a processor that receives the images from the rolling shutter sensor. The rolling shutter sensor and the time-varying illumination source are operated synchronously to cause: on-cadence lines of the rolling shutter sensor to receive illumination from the continuously illuminating illumination source and a first amount of illumination from the time-varying illumination source; and off-cadence lines of the rolling shutter sensor to receive the illumination from the continuously illuminating illumination source and a second amount of illumination from the time-varying illumination source.
Abstract: A method of video coding using generalized bi-prediction (GBi) receives input data associated with a current block in a current picture, wherein the input data comprises information associated with a block size of the current block, determines a set of weighting factor pairs, wherein a size of the set of weighting factor pairs depends on the block size of the current block, and derives a set of advanced motion vector prediction (AMVP) candidate lists comprising MVP (motion vector prediction) candidates. The method further derives a set of final motion information based on the MVP candidates, determines that the set of final information comprises a bi-prediction predictor, generates a final predictor by combining two reference blocks associated with the final motion information using a target weighting factor pair selected from the set of weighting factor pairs, and encodes or decoding the current block using the final predictor.
Abstract: The disclosed embodiments relate to methods and systems for avoiding a collision between an aircraft on the ground and an obstacle using a three-dimensional visual indication of the area or plane of winglets on the wingtips of the aircraft. The method includes receiving a video image from a camera positioned in one of the winglets, the video image representing a field of view through which the winglet of the aircraft will pass along a present heading of the aircraft. Next a processor determines a three-dimensional area or plane within the field of view through which the winglet of the aircraft will pass. An overlay is displayed within the field of view to assist the pilot in avoiding collisions with obstacles.
Type:
Grant
Filed:
April 16, 2020
Date of Patent:
October 5, 2021
Assignees:
Gulfstream Aerospace Corporation, Securaplane Technologies, Inc.
Inventors:
Robert O'Dell, Frank Manochio, Jason Meade, Michael Boost, Jamie Clive Marshall
Abstract: A video decoder can be configured to set each block-level syntax element of a plurality of block-level syntax elements to a value indicating that an adaptive loop filter is enabled for an associated component of the video data in response to determining that a slice-level syntax element is set to a value indicating that values for the plurality of block-level syntax elements are inferred.
Type:
Grant
Filed:
July 15, 2019
Date of Patent:
October 5, 2021
Assignee:
Qualcomm Incorporated
Inventors:
Marta Karczewicz, Nan Hu, Vadim Seregin, Akshay Gadde
Abstract: An image data of pictures constituting moving image data is encoded to generate an encoded video stream. In this case, the image data of the pictures constituting the moving image data is classified into a plurality of levels and encoded to generate a video stream having the image data of the pictures at the respective levels. Hierarchical composition is equalized between a low-level side and a high-level side, and corresponding pictures on the low-level side and the high-level side are combined into one set and are sequentially encoded. This allows a reception side to decode the encoded image data of the pictures on the low-level side and the high-level side with a smaller buffer size and a reduced decoding delay.
Abstract: A multi-camera vision system utilized onboard a work vehicle includes, among other components, vehicle cameras and a display device utilized within an operator station of the work vehicle. The vehicle cameras provide vehicle camera feeds of the work vehicle's surrounding environment, as captured from different vantage points. A controller, which is coupled to the vehicle cameras and to the display device, is configured to: (i) generate, on the display device, a multi-camera display including framing icons, gallery display areas within the framing icons, and a main display area; (ii) identify a currently-selected vehicle camera feed and one or more non-selected vehicle camera feeds from the multiple vehicle camera feeds; and (iii) present the currently-selected vehicle camera feed in the main display area of the multi-camera display, while concurrently presenting the one or more non-selected vehicle camera feeds in a corresponding number of the gallery display areas.
Abstract: Methods and apparatus are provided for signaling intra prediction for large blocks for video encoders and decoders. The intra prediction is signaled by selecting a basic coding unit size and assigning a single spatial intra partition type for the basic coding unit size. The single spatial intra partition type is selectable from among a plurality of spatial intra partition types. The at least one large block has a large block size greater than a block size of the basic coding unit. The intra prediction is hierarchical layer intra prediction and is performed for the at least one large block by at least one of splitting from the large block size to the basic coding unit size and merging from the basic coding unit size to the large block size.
Type:
Grant
Filed:
November 8, 2017
Date of Patent:
August 3, 2021
Assignee:
InterDigital VC Holdings, Inc.
Inventors:
Yunfei Zheng, Qian Xu, Xiaoan Lu, Peng Yin, Joel Sole Rojals, Adeel Abbas
Abstract: Methods, apparatuses and systems may provide for technology that performs global motion estimation. More particularly, implementations relate to technology that provides accurate global motion compensation in order to improve video processing efficiency. In some implementations, a highly adaptive and accurate approach may be used to address the problem of estimation and compensation of global motion in video scenes. The solution may be content adaptive as it uses adaptive modeling of motion using best of multiple models that are used to estimate global motion.
Abstract: The current document is directed to methods and systems for monitoring a dental patient's progress during a course of treatment. A three-dimensional model of the expected positions of the patient's teeth can be projected, in time, from a three-dimensional model of the patient's teeth prepared prior to beginning the treatment. A digital camera is used to take one or more two-dimensional photographs of the patient's teeth, which are input to a monitoring system. The monitoring system determines virtual-camera parameters for each two-dimensional input image with respect to the time-projected three-dimensional model, uses the determined virtual-camera parameters to generate two-dimensional images from the three-dimensional model, and then compares each input photograph to the corresponding generated two-dimensional image in order to determine how closely the three-dimensional arrangement of the patient's teeth corresponds to the time-projected three-dimensional arrangement.
Abstract: A video encoder and/or video decoder are configured to apply an adaptive loop filter to a reconstructed block of video data. The video encoder and/or video decoder may be configured to determine gradient values for a window that covers the reconstructed block of video data, determine a scaling factor for the gradient values based on a number of available pixels in the window that are on a same side of a virtual boundary as the reconstructed block, and scale the gradient values based on the scaling factor. The video encoder and/or video decoder may determine a class of adaptive loop filter based on the scaled gradient values.
Type:
Grant
Filed:
December 18, 2019
Date of Patent:
June 22, 2021
Assignee:
Qualcomm Incorporated
Inventors:
Nan Hu, Vadim Seregin, Marta Karczewicz
Abstract: The present disclosure is directed to a method to increase virtual machine density on a server system through adaptive rendering by dynamically determining when to shift video rendering tasks between the server system and a client computing device. In another embodiment, the adaptive rendering, using various parameters, can select one or more encoding and compression algorithms to use to prepare and process the video for transmission to the client computing device. In another embodiment, a video rendering system is disclosed that can adaptively alter how and where a video is rendered, encoded, and compressed.
Type:
Grant
Filed:
May 1, 2018
Date of Patent:
May 18, 2021
Assignee:
Nvidia Corporation
Inventors:
Rouslan Dimitrov, Chris Amsinck, Viktor Vandanov, Santanu Dutta, Walter Donovan, Olivier Lapicque