Patents Examined by Ula C. Ruddock
  • Patent number: 11527797
    Abstract: The present disclosure provides a battery pack, including: battery modules, wherein two or more of the battery modules are arranged side by side in a first direction; and connecting assemblies, wherein each connecting assembly is connected between adjacent two battery modules, and the connecting assembly includes an elastic connecting member being able to elastically deform in the first direction such that the adjacent two battery modules are elastically connected by the connecting assembly. The elastic connecting member can provide a buffer between the adjacent two battery modules. In the case that one of the adjacent two battery modules suffers a force, the elastic connecting member can absorb a force from this battery module, to prevent the adjacent two battery modules from interacting with each other when suffering the force, and avoid a safety accident caused by the interaction between the two battery modules connected to each other.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: December 13, 2022
    Assignee: Contemporary Amperex Technology Co., Limited
    Inventors: Shuo Sun, Mingdong Wang, Mu Qian, Jinqing Ji, Min Zeng, Shang Li, Yang Li
  • Patent number: 11527759
    Abstract: A dual porosity cathode for a lithium-air battery made from porous nanographene sponge molded to form a multitude of pores embedded in a polymer layer. The first level of porosity is the interior surface area of the molded pores. The second level of porosity is the interior surface area within the micropores within the porous nanographene sponge material. The dual porosity cathode is useful for a lithium-air battery because of the greatly increased cathode surface area created by the micropores and the very small localized quantities of LiO2 that form in the micropores from the reaction between Li+ and oxygen.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: December 13, 2022
    Inventor: Slobodan Petrovic
  • Patent number: 11527791
    Abstract: A battery module comprising a plurality of battery cells (2), in particular lithium-ion battery cells (20), which are received in a receptacle space (11) of the battery module (1), wherein the battery module (1) has a temperature-regulating plate (5) configured for regulating the temperature of the plurality of battery cells (2), said temperature-regulating plate furthermore forming a receptacle element (6) that receives a housing element (10) of the battery module (1) in such a way that the receptacle space (11) is closed off vis-à-vis the surroundings (12) of the battery module (1), wherein the housing element (10) is connected to the temperature-regulating plate (5) in a positively locking and/or force-locking manner by means of a securing element (8) formed by the temperature-regulating plate (5).
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: December 13, 2022
    Assignee: Robert Bosch GmbH
    Inventor: Markus Schmitt
  • Patent number: 11522178
    Abstract: A method of producing a negative electrode, including comminuting Li-Group IVA alloy particles in a solvent to a desired particle size distribution range, exposing surfaces of the Li-Group IVA alloy particles to at least one surface modifier present during the comminution process, the at least one surface modifier forming at least one continuous coating on at least one of the exposed surfaces of the Li-Group IVA alloy particles, removing the solvent, and adding the surface-modified Li-Group IVA alloy particles to a negative electrode material by a coating process.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: December 6, 2022
    Assignee: KRATOS LLC
    Inventors: Timothy D. Newbound, Reza Kavian, Jeff A. Norris
  • Patent number: 11522179
    Abstract: The present invention relates to a negative electrode including a current collector and a negative electrode active material layer disposed on the current collector, wherein the negative electrode active material layer includes a negative electrode active material, carbon black, and a binder, wherein the negative electrode active material includes silicon particles, and the binder includes a copolymer containing a unit derived from a poly(vinylalcohol) (PVA) and a unit derived from an ionized and substituted acrylate, the binder being included in the negative electrode active material layer in an amount of 18 wt % to 22 wt %.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: December 6, 2022
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Young Jae Kim, Jung Woo Yoo
  • Patent number: 11522212
    Abstract: A battery cell having a layered pressure homogenizing soft medium for liquid/solid state Li-ion rechargeable batteries. The battery cell of the present technology includes one or more battery pouches, a pressure mechanism external to the battery pouches that applies a pressure to the battery pouches, and a layered pressure homogenizing soft medium that is displaced between the battery pouches and the pressure mechanism. By using a number of pressure homogenizing medium layers, each with a specific range of thickness and within a range of physical properties, the battery pouches displaced between the pressure homogenizing medium layers are evenly pressurized by the mediums due to pressure applied by the pressure mechanism to within a desired range of pressure. The pressure applied to the battery pouches by the pressure homogenizing medium is monitored by a pressure sensor, such as a two-dimensional pressure sensor.
    Type: Grant
    Filed: September 22, 2019
    Date of Patent: December 6, 2022
    Assignee: TeraWatt Technology Inc.
    Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Masatsugu Nakano, Hiroshi Imoto
  • Patent number: 11522176
    Abstract: Described herein are improved composite anodes and lithium-ion batteries made therefrom. Further described are methods of making and using the improved anodes and batteries. In general, the anodes include a porous composite having a plurality of agglomerated nanocomposites. At least one of the plurality of agglomerated nanocomposites is formed from a dendritic particle, which is a three-dimensional, randomly-ordered assembly of nanoparticles of an electrically conducting material and a plurality of discrete non-porous nanoparticles of a non-carbon Group 4A element or mixture thereof disposed on a surface of the dendritic particle. At least one nanocomposite of the plurality of agglomerated nanocomposites has at least a portion of its dendritic particle in electrical communication with at least a portion of a dendritic particle of an adjacent nanocomposite in the plurality of agglomerated nanocomposites.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: December 6, 2022
    Assignees: GEORGIA TECH RESEARCH CORPORATION, SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Oleksandr Magazynskyy, Patrick Dixon, Benjamin Hertzberg
  • Patent number: 11515570
    Abstract: Provided is a secondary battery including: a positive electrode plate composed of an inorganic material containing a positive electrode active material in an oxide form and having a thickness of 25 ?m or more; a negative electrode plate composed of an inorganic material containing a negative electrode active material in an oxide form and having a thickness of 25 ?m or more; and an inorganic solid electrolyte, the secondary battery being charged and discharged at a temperature of 100° C. or higher.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: November 29, 2022
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukihisa Takeuchi, Iwao Owada, Yukinobu Yura, Yosuke Sato, Toshihiro Yoshida, Yuji Katsuda
  • Patent number: 11515528
    Abstract: Described herein are improved composite anodes and lithium-ion batteries made therefrom. Further described are methods of making and using the improved anodes and batteries. In general, the anodes include a porous composite having a plurality of agglomerated nanocomposites. At least one of the plurality of agglomerated nanocomposites is formed from a dendritic particle, which is a three-dimensional, randomly-ordered assembly of nanoparticles of an electrically conducting material and a plurality of discrete non-porous nanoparticles of a non-carbon Group 4A element or mixture thereof disposed on a surface of the dendritic particle. At least one nanocomposite of the plurality of agglomerated nanocomposites has at least a portion of its dendritic particle in electrical communication with at least a portion of a dendritic particle of an adjacent nanocomposite in the plurality of agglomerated nanocomposites.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: November 29, 2022
    Assignees: GEORGIA TECH RESEARCH CORPORATION, SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Oleksandr Magazynskyy, Patrick Dixon, Benjamin Hertzberg
  • Patent number: 11515607
    Abstract: There is provided a battery system including parallel-connected bus bars each connecting the plurality of prismatic battery cells in parallel, and a safety mechanism configured to be capable of interrupting a current path of prismatic battery cells connected in parallel by the parallel-connected bus bars, where the sealing plate of one of the prismatic battery cells convexly deforms due to a rise in an internal pressure of this prismatic battery cell when an abnormality occurs, the sealing plate that has convexly deformed comes into contact with the parallel-connected bus bars to form external short circuitry between the electrode terminals that are positive and negative of one prismatic battery cell connected in parallel to the prismatic battery cell with the abnormality, and external short circuitry activates the safety mechanism that interrupts a current flowing into the prismatic battery cell with the abnormality.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: November 29, 2022
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Naotake Yoshida, Kazuhiro Harazuka, Nobuo Iwatsuki, Shinji Ota
  • Patent number: 11515574
    Abstract: This invention provides a system and a method for safe production of electrolyte at required concentration on site on demand where occasionally only water is needed to be filled up. The system includes two main units: a saturated electrolyte unit and a diluted electrolyte unit.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: November 29, 2022
    Assignee: PHINERGY LTD.
    Inventors: Dekel Tzidon, Avraham Melman
  • Patent number: 11515524
    Abstract: A positive active material for a rechargeable lithium battery includes: a core having a layered structure; and a surface layer on at least one portion of the surface of the core and including an oxide, wherein the oxide includes at least one first element and at least one second element each selected from Ti, Zr, F, Mg, Al, P, and a combination thereof, the first element and the second element being different from one another, the first element included in the positive active material in an amount of about 0.01 mol % to about 0.2 mol % based on a total weight of the positive active material, and the second element included in the positive active material in an amount of about 0.02 mol % to about 0.5 mol % based on a total weight of the positive active material. A rechargeable lithium battery includes the positive active material.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: November 29, 2022
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yongmok Cho, Young-Hun Lee, Hyunjei Chung
  • Patent number: 11508953
    Abstract: A negative electrode for a lithium secondary battery, which includes a negative electrode active material layer formed on a negative electrode collector, and a coating layer formed on the negative electrode active material layer and which includes lithium metal and metal oxide, a lithium secondary battery including the same, and a method of preparing the negative electrode.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: November 22, 2022
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Oh Byong Chae, Yoon Ah Kang, Jun Hyuk Song, Eun Kyung Kim, Sang Wook Woo
  • Patent number: 11508964
    Abstract: Disclosed is a lithium complex oxide and method of manufacturing the same, more particularly, a lithium complex oxide effective in improving the characteristics of capacity, resistance, and lifetime with reduced residual lithium and with different interplanar distances of crystalline structure between a primary particle locating in an internal part of secondary particle and a primary particle locating on the surface part of the secondary particle, and a method of preparing the same.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: November 22, 2022
    Assignee: ECOPRO BM CO., LTD.
    Inventors: Moon Ho Choi, Jong Seung Shin, Dong Hee Kim, Suk Yong Jeon, Hyun Jong Yu, Kyoung Jun Lee, Young Nam Park
  • Patent number: 11509026
    Abstract: The disclosure relates to a cap assembly and a secondary battery. The cap assembly includes: a cap plate including a main portion and a convex portion, wherein the main portion includes a first surface, a second surface and an electrode lead-out hole; an electrode terminal including an extension portion that extends beyond a hole wall of the electrode lead-out hole and extends in a circumferential direction of the electrode lead-out hole to form a ring structure, and the extension portion is arranged on a side of the first surface away from the second surface; and a sealing ring at least partially disposed between the extension portion and the main portion, wherein the convex portion is disposed on the second surface and around the electrode lead-out hole and has a thickness of 0.01 mm to 2 mm, a top surface of the convex portion extends out of the second surface.
    Type: Grant
    Filed: March 21, 2020
    Date of Patent: November 22, 2022
    Assignee: Contemporary Amperex Technology Co., Limited
    Inventors: Huasheng Su, Shoujun Huang, Yulian Zheng
  • Patent number: 11509012
    Abstract: A thin-type battery includes: a flat shaped electrode body formed by stacking a positive electrode and a negative electrode while interposing a separator in between; an electrolyte; and an exterior body made from a laminate film, the exterior body enclosing the electrode body and the electrolyte with ends of the exterior body being hermetically sealed by heat-sealing, wherein the exterior body includes a folded part to be folded from one surface side to another surface side of the electrode body and to extend along an edge of the electrode body, and the folded part includes resin-interposed heat-sealing portions located in regions in two ends in a direction along the edge of the electrode body and outside the electrode body, where portions of the exterior body are opposed to each other, each resin-interposed heat-sealing portion being heat-sealed by interposing a piece made from a resin.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: November 22, 2022
    Assignee: FDK CORPORATION
    Inventors: Ayano Uemura, Rei Hanamura
  • Patent number: 11509003
    Abstract: A cooling structure includes a power storage stack including power storage cells, first and second end plates, a refrigerant supply path for supplying refrigerant, and first paths each provided in a clearance between two of the adjacent power storage cells. The first end plate is configured to form a second path communicating with the refrigerant supply path in a clearance between a first end of the power storage stack and the first end plate. The second end plate is configured to form a third path communicating with the refrigerant supply path in a clearance between a second end of the power storage stack and the second end plate. The power storage stack is cooled to have a temperature distribution in which the power storage cells disposed on the second end side have temperatures higher than the temperatures of the power storage cells disposed on the first end side.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: November 22, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kengo Iwakura, Tsuyoshi Hayashi, Isao Takahashi
  • Patent number: 11508984
    Abstract: A battery assembly can be formed on a base layer provided on a substrate, with a thin film battery stack including an anode layer, a cathode layer, and an electrolyte layer between the anode and cathode layers. The thin film battery stack can be attached to a pattern film layer with holes for electrical connection to the anode and cathode layers.
    Type: Grant
    Filed: June 23, 2018
    Date of Patent: November 22, 2022
    Assignee: Apple Inc.
    Inventors: Lili Huang, Richard M. Mank
  • Patent number: 11508979
    Abstract: In one or more embodiments of the novel aircraft fuel cell system without the use of a buffer battery, the fuel cell and compressor would be sized sufficiently larger for the intended application, allowing the compressor to change speeds much faster. This in turn would allow power outputs to change much quicker. If power outputs can change as quickly as the application dictates, then a buffer battery is not necessary. In one or more embodiments, because the system is mostly electronically controlled, software can be written to protect the fuel cell from instantaneous power spikes. If a large power output is suddenly requested of the fuel cell, the software can smooth out the demand curve to provide an easier load profile to follow.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: November 22, 2022
    Assignee: ZeroAvia, Inc.
    Inventors: Valery Miftakhov, Vadim Belogorodsky, Ilya Henry Grishashvili
  • Patent number: 11509001
    Abstract: A thermal management power battery assembly and a battery pack having a plurality of the thermal management power battery assemblies connected in series. The battery assembly includes a plurality of staggered battery cells, a thermal conduction module, a liquid cooling module, and a battery cell fixing module for fixing the battery cells. The battery cell fixing module includes a battery cell position limiting device, and assembly supporting device located at two sides of the battery cell position limiting device; the liquid cooling module is integrated in the assembly supporting device; the thermal conduction module is simultaneously in contact with the battery cells and the assembly supporting device. The liquid cooling module is integrated with the assembly supporting device. The liquid cooling module is intergrated with the assembly supporting device.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: November 22, 2022
    Assignee: EVE ENERGY CO., LTD.
    Inventors: Jibing Jiang, Yanqiang Feng, Dingding Yuan, Guomin Huang, Jincheng Liu