Patents Examined by Unsu Jung
  • Patent number: 8792968
    Abstract: A system, an apparatus and a method for human health evaluation utilizing Thermal Micro Texture (TMT) mapping technology is disclosed. The method comprises scanning body areas of a patient utilizing an infrared camera, detecting abnormalities in the body of the patient, analyzing abnormalities of the patient against information stored in a database, and reporting results to the patient in a pre-determined format. The method provides an earlier discovery of disease by mapping and analyzing abnormal temperatures changes in the body, which can help prevent the disease from progressing at an early stage.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: July 29, 2014
    Inventors: Song Xiao, Pei Si Cai, Jun Yang, Xiu Fang Deng, Ying Jie Wu
  • Patent number: 8792962
    Abstract: A catheter has single axis sensors mounted directly along a portion of the catheter whose position/location is of interest. The magnetic based, single axis sensors are on a linear or nonlinear single axis sensor (SAS) assembly. The catheter includes a catheter body and a distal 2D or 3D configuration provided by a support member on which at least one, if not at least three single axis sensors, are mounted serially along a length of the support member. The magnetic-based sensor assembly may include at least one coil member wrapped on the support member, wherein the coil member is connected via a joint region to a respective cable member adapted to transmit a signal providing location information from the coil member to a mapping and localization system. The joint region provides strain relief adaptations to the at least one coil member and the respective cable member from detaching.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: July 29, 2014
    Assignee: Biosense Webster, Inc.
    Inventors: Maribeth Esguerra, Jennifer Maffre, Thanh Nguyen
  • Patent number: 8790263
    Abstract: The embodiments contemplate systems and methods for detecting moving tissue within an object. In one such method, a first and second ultrasound pulse are transmitted at a first sample volume within an object. A first echo signal of the first ultrasound pulse is received from the first sample volume and a second echo signal of the second ultrasound pulse is received from the first sample volume. An estimate of position displacement data of the first sample volume is computed from the first and second echo signals, and the estimate of position displacement data is compared to a predetermined position displacement data threshold indicative of moving tissue. A determination is made, based on the comparison, whether the first sample volume corresponds to moving tissue and, based on the determination, the transmitting, receiving, computing and determining is repeated for a second sample volume.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: July 29, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Kevin S. Randall, Joseph A. Urbano, Lawrence A. Engle, Anthony P. Lannutti, Jodi Schwartz Klessel, Raymond F. Weymer, Jr., Michael G. Cannon
  • Patent number: 8792961
    Abstract: In a method and magnetic resonance (MR) system to create an MR magnitude image data set and a phase image data set of an examination subject, first echo signals in a first raw MR data set are detected after a first echo time TE1 and at least second echo signals in at least one second raw MR data set are detected after a second echo time TE2 that is longer than TE1, a magnitude image data set is generated on the basis of the first raw MR data set and the at least one second raw MR data set with averaging of the first and the at least one second raw MR data set, and the phase image data set is generated based on the phase information contained in the at least two raw MR data sets, with averaging of the respective phase information contained in the at least two raw MR data sets.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: July 29, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Patric Gross, Joerg Roland
  • Patent number: 8784321
    Abstract: The present invention provides an imaging probe for imaging mammalian tissues and structures using high resolution imaging, including high frequency ultrasound and optical coherence tomography. The imaging probes structures using high resolution imaging use combined high frequency ultrasound (IVUS) and optical imaging methods such as optical coherence tomography (OCT) and to accurate co-registering of images obtained from ultrasound image signals and optical image, signals during scanning a region of interest.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: July 22, 2014
    Assignee: Sunnybrook Health Sciences Centre
    Inventors: Brian Courtney, Nigel Robert Munce, Amandeep Singh Thind, Victor Xiao Dong Yang, Francis Stuart Foster
  • Patent number: 8788022
    Abstract: There is provided a method and system for optical imaging of a light scattering object. The method comprises the detection of one or more time-gates of a temporal point spread function (TPSF) to be used to construct an image of optical properties of the object. The method also comprises the simultaneous detection of two or more selected time-gates using a time-gated camera. The method enables more efficient spatial-temporal acquisition of optical signals for imaging purposes.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: July 22, 2014
    Assignee: President and Fellows of Harvard College
    Inventor: David Jonathan Hall
  • Patent number: 8781557
    Abstract: Determining a shape of a medical device to be implanted into a subject produces an image including a defective portion and a non-defective portion of a surface of a tissue of interest included in the subject. The tissue of interest is segmented within the image. A template, representing a normative shape of an external anatomical surface of the tissue of interest, is superimposed to span the defective portion. An external shape of an implant, is determined as a function of respective shapes of the defective portion as seen in the template, for repairing the defective portion.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: July 15, 2014
    Assignee: Osteoplastics, LLC
    Inventors: Howard D. Dean, Krishnamoorthy Subramanyan, Alexandros T. Moullas, Robert A. Ratcheson
  • Patent number: 8777860
    Abstract: A method for evaluation of renal perfusion with power Doppler ultrasonography is disclosed in the present invention. Serial renal vascular images at different vascular areas including the whole vascular tree, interlobar, arcuate, and interlobular vessels were captured. Imaging processing software was designed to analyze the changes of power Doppler intensity of colored pixels within regions of interest (ROI). Power Doppler Vascularity index (PDVI) has been defined as the percentage of vascular perfusion within a region of interest (ROI). The renal vascular perfusion index (RVPI) is defined as the maximal power Doppler vascular index divided by minimal power Doppler vascular index (PDVImax/PDVImin) among the serial images. The mean of weighted power Doppler vascular index (WPDVImean) is defined as the average of the intensity of color pixels among the ROI within the serial images.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: July 15, 2014
    Assignee: National Taiwan University
    Inventors: Jeou-Jong Shyu, Sun-Hua Pao, Yio-Wha Shau, Shuo-Meng Wang, Nai-Kuan Chou
  • Patent number: 8777858
    Abstract: Various methods and devices for minimally invasive treatment and prevention of conditions of the fascia are provided. In one aspect, a method includes providing an acoustic wave source effective to deliver a focused acoustic wave to a target site within a patient's body, and focusing an acoustic wave through a patient's skin such that at least one location in the patient's fascia is fenestrated in a desired pattern.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: July 15, 2014
    Assignee: The General Hospital Corporation
    Inventors: Richard Rox Anderson, Kirby Vosburgh, John A. Parrish
  • Patent number: 8774902
    Abstract: A device and method to diagnose an internal abnormality in a living subject by sensing a passively occurring electromagnetic radiation signal associated with the abnormality and inside an orifice of the subject. Diagnosis includes detection, imaging or identification of the abnormality. An instrument is used either to bring a sensor into the orifice or to transmit the signal to a sensor located outside of the orifice. An example of the instrument includes a prior art endoscope.
    Type: Grant
    Filed: April 1, 2007
    Date of Patent: July 8, 2014
    Assignee: Passive Imaging Medical Systems Engineering Ltd. (PIMS)
    Inventors: Ben Zion Dekel, Nathan Blaunshtein, Arkadii Zilberman
  • Patent number: 8774898
    Abstract: The present invention relates to a method of characterising tissue function in a subject in need of such characterization. The method comprises performing an imaging technique, on a voxel defined within a tissue space of interest, wherein image data is generated over a time period during which the subject inhales gases with at least two different partial pressures of a paramagnetic gas. A compartmental model algorithm is applied to the image data generated for the voxel to provide information on metabolic function of the tissue.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: July 8, 2014
    Assignee: BIOxyDyn Limited
    Inventors: Deirdre McGrath, Geoffrey Parker
  • Patent number: 8768436
    Abstract: By a CPU (101) of a device (100) for processing medical image, a coronary artery region and a cardiac muscle region that are to be analyzed are extracted from angiographic images of the coronary artery obtained from X-ray CT images or the like. Next, degrees of isolation (blood vessel dependences), which indicate the effects of the coronary artery on the individual sites of the myocardium, are calculated. The calculated degrees of isolation are referred to as pixel values and displayed while superimposed on a bull's eye map of the cardiac muscle, a three-dimensional image of the heart or the like. As a result, the effect of infarction or constriction on the cardiac muscle region can be visually recognized merely by using the angiographic image data of the coronary artery without conducting a delay angiographic imaging examination or the like.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: July 1, 2014
    Assignee: Hitachi Medical Corporation
    Inventor: Tomohiro Nagao
  • Patent number: 8764664
    Abstract: A conformable medical data acquisition pad and configurable imaging system. The conformable pad may comprise a carrier base having a plurality of transceivers in operative association with an interconnection network that communicates with a computer system. The data acquisition pad may be constructed with a flex circuit and at least one ultrasound data collection device to carry out a variety of medical procedures. Different types of signal transmitting and receiving elements can be selected to provide ultrasound systems, including scalable capacitive micromachined ultrasound transducers arranged in a variety of configurations in combination with controlling electronics which interface with a translator board and software for signal processing. The resulting ultrasound data, such as a three-dimensional model, can be transmitted via an industry standard high speed bus to standard interfaces on various ultrasound systems.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: July 1, 2014
    Assignee: Vizyontech Imaging, Inc.
    Inventors: Karla M. Callahan, Firat Kahraman
  • Patent number: 8764665
    Abstract: An acoustic probe (100, 300) includes an acoustic transducer (15, 444), and a plurality of variably-refracting acoustic lens elements (10, 210a, 210b, 442) coupled to the acoustic transducer. Each variably-refracting acoustic lens element has at least a pair of electrodes (150, 160) adapted to adjust at least one characteristic of the variably-refracting acoustic lens element in response to a selected voltage applied across the electrodes. In one embodiment, each variably-refracting acoustic lens element includes a cavity, first and second fluid media (141, 142) disposed within the cavity, and the pair of electrodes. The speed of sound of an acoustic wave in the first fluid medium is different than the speed of sound of the acoustic wave in the second fluid medium. The first and second fluid media are immiscible with respect to each other, and the first fluid medium has a substantially different electrical conductivity than the second fluid medium.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: July 1, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Christopher Stephen Hall, Chien Ting Chin, Jan Frederik Suijver, Bernardus Hendrikus Wilhelmus Hendriks, Stein Kuiper
  • Patent number: 8768437
    Abstract: A system and apparatus allows the tracking of a selected body portion, instrument, or both. A tracking device can be interconnected to a body portion at a mounting site. A procedure can be performed at a location remote from the mounting site of the tracking device. The tracking device can be interconnected with the body in a low invasive manner.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: July 1, 2014
    Assignee: Sofamor Danek Holdings, Inc.
    Inventor: Earl F Barrick
  • Patent number: 8758250
    Abstract: Disclosed is an ultrasound color Doppler image system. The ultrasound color Doppler image system includes a calculation unit that calculates a mean value associated with an I/Q signal corresponding to a pixel of a color image in an ultrasound image and generates a multiplication value using the calculated mean value; a comparison unit that compares the generated multiplication value with the mean value; and a masking unit that performs masking of the pixel based on a comparison result, and, the calculation unit calculates the mean value of the I/Q signal for each frame, selects a reference mean value based on scales of the calculated mean values, and generates the multiplication value by multiplying the selected reference mean value and a scale factor.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: June 24, 2014
    Assignee: Samsung Medison Co., Ltd.
    Inventors: Sung Bae Park, Moo Ho Bae, Tae Yun Kim
  • Patent number: 8761861
    Abstract: A magnetic resonance imaging apparatus includes a magnet having a two poles and a wall connecting the poles; the poles delimiting a patient-imaging space; and a table which is slidably connected to one of the two poles between the two poles and which table extends substantially parallel to the two poles; a drive for displacing the table relative to the magnet; a lock for locking the table in a selected position relative to the magnet; a drive for rotating the magnet about the axis; the table connected to the magnet such that the table rotates with the magnet when the magnet rotates about the axis; the magnet and the table being rotatable from a position in which the poles and the table are horizontal to a position in which the table and the poles are vertical.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: June 24, 2014
    Assignee: Esaote S.p.A.
    Inventors: Luigi Satragno, Eugenio Biglieri, Fabio Rezzonico, Osvaldo Pugliese, Orfeo Contrada, Trequattrini Alessandro
  • Patent number: 8758246
    Abstract: Disclosed herein is an ultrasound system which has a control panel adjustable in height. The ultrasound system includes the control panel, a power transmission device adjusting a height of the control panel, a contact detection unit detecting contact and generating a selection signal, and a controller controlling the power transmission device according to the selection signal.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: June 24, 2014
    Assignee: Samsung Medison Co., Ltd.
    Inventor: Jung Sik Song
  • Patent number: 8758253
    Abstract: An ultrasonic probe is disclosed which includes a cMUT chip having a plurality of vibration elements whose electromechanical coupling coefficient or sensitivity is changed according to a bias voltage and transmitting and receiving ultrasonic waves, an acoustic lens arranged above the cMUT chip, and a backing layer arranged below the cMUT chip. An electric leakage preventing unit is provided at the ultrasonic wave transmission/reception surface side of the acoustic lens or between the acoustic lens and the cMUT chip. The electric leakage preventing unit can be, for example, an insulating layer such as a ground layer. Such a structure makes it is possible to provide an ultrasonic probe capable of preventing electric leakage from the ultrasonic probe to an object to be examined so as to improve the electric safety and an ultrasonic diagnostic apparatus using the probe.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: June 24, 2014
    Assignee: Hitachi Medical Corporation
    Inventors: Shuzo Sano, Akifumi Sako, Takashi Kobayashi, Mikio Izumi
  • Patent number: 8755863
    Abstract: A magnetic resonance imaging apparatus includes a magnet having two poles and a wall connecting the poles; the poles delimiting a patient-imaging space; and a table which is slidably connected to one of the two poles between the two poles and which table extends substantially parallel to the two poles; a drive for displacing the table relative to the magnet; a lock for locking the table in a selected position relative to the magnet; a drive for rotating the magnet about the axis; the table connected to the magnet such that the table rotates with the magnet when the magnet rotates about the axis; the magnet and the table being rotatable from a position in which the poles and the table are horizontal to a position in which the table and the poles are vertical.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: June 17, 2014
    Assignee: Esaote S.p.A.
    Inventors: Luigi Satragno, Eugenio Biglieri, Fabio Rezzonico, Osvaldo Pugliese, Orfeo Contrada, Alessandro Trequattrini