Patents Examined by Unsu Jung
  • Patent number: 9245323
    Abstract: A medical diagnostic device is characterized in that an image processing unit (22) includes an image noise removal part (211, 211?) which removes the noise in the generated image of a person to be examined, a signal component enhancement processing part (212, 212?) which generates an enhanced-signal component image by performing signal component enhancement processing of the image from which the noise is removed by the image noise removal part, and an image combining part (213, 213?) which generates a combined image by combining the image of the person to be examined, the image from which the noise is removed by the image noise removal part, and an enhanced-signal component image subjected to signal component enhancement processing by the signal component enhancement processing part.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: January 26, 2016
    Assignee: HITACHI MEDICAL CORPORATION
    Inventors: Jie Bai, Kenji Nakahira, Atsushi Miyamoto
  • Patent number: 9226663
    Abstract: Described herein are systems and methods for optically isolating components of an optical sensor in physiological monitoring devices worn by a user to sense, measure, and/or display physiological information. An optical sensor may be mounted in the rear face of the device, emit light proximate a targeted area of a user's body, and detect light reflected from the targeted area. Optically isolating structure may be located at least partially between one or more components of the optical sensor to ensure that light detected by the sensor is light reflected from the targeted area rather than light emitted directly from a light source and/or ambient light. The optically isolating structure may, in some cases, extend between a contact surface of the monitoring device to a base portion of the sensor components or a surface of a circuit board to which the sensor components are mounted.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: January 5, 2016
    Assignee: Physical Enterprises, Inc.
    Inventor: Ming Shun Fei
  • Patent number: 9226729
    Abstract: The ultrasound diagnostic apparatus, ultrasound image generation apparatus and method transmit ultrasound waves to a subject into which a puncture tool is inserted, receive reflected waves reflected from the subject and the puncture tool, and generate echo signals of time-sequential frames based on the received reflected waves, and generate an ultrasound image of the subject based on the generated echo signals. These apparatus and method generate a differential echo signal between time-sequential frames from the echo signals, perform a tip detection process based on the differential echo signal to thereby detect at least one tip candidate including a tip end of the puncture tool, highlight a tip candidate of the puncture tool detected to thereby generate a tip image, and display the tip image of the highlighted puncture tool so as to be superimposed on the generated ultrasound image.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: January 5, 2016
    Assignee: FUJIFILM Corporation
    Inventors: Rika Tashiro, Kimito Katsuyama, Yukiya Miyachi
  • Patent number: 9226697
    Abstract: A monitoring device mounted to a user can be used to estimate a position or orientation of a body portion of the user, such as a joint or jointed portion of the user. Radiation can be emitted toward the body portion and a reflection of this radiation can be received. The reflected radiation can then be used to estimate a position of the body portion of the user.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: January 5, 2016
    Assignee: SENSIBRACE TECHNOLOGIES, INC.
    Inventors: Sandeep Patil, Sushmita Roy
  • Patent number: 9220575
    Abstract: A device for use in an image-guided procedure on a patient is disclosed. The device includes an EM sensor assembly, a frame assembly (e.g., a base portion from which a plurality of legs project upward to a common point) and a plurality of attachment members. Each attachment member is arranged to be releasably (e.g., adhesively) secured to the skin of a patient and to be coupled to the frame assembly to secure the frame assembly on the skin of the patient. The EM sensor assembly is arranged to be releasably secured to the frame assembly (e.g., pivotably snap-fit into a socket in the frame assembly). The device additionally includes plural visualizable elements (e.g., metal balls) that are adapted to be readily imaged to establish imaging reference points and a plurality of asymmetrically disposed apertures to enable tattooing indicia on the skin of the patient through the apertures.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: December 29, 2015
    Assignee: Civco Medical Instruments Co., Inc.
    Inventors: Willet F. Whitmore, III, Roger F. Wilson
  • Patent number: 9215973
    Abstract: An in-vivo imaging device including a camera may include a frame storage device. Systems and methods which vary the frame capture rate of the camera and/or frame display rate of the display unit of in-vivo camera systems are discussed. The capture rate is varied based on for example, a physical quantity experienced by the camera system, or physical measurements related to the motion of the camera. Alternatively, the frame capture rate is varied based on comparative image processing of a plurality of frames. The frame display rate of the system may be varied based on comparative image processing of a multiplicity of frames. Both the frame capture and the frame display rates of such systems can be varied concurrently.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: December 22, 2015
    Assignee: GIVEN IMAGING LTD.
    Inventors: Arkady Glukhovsky, Gavriel Meron, Doron Adler, Ofra Zinaty, Jerome Avron
  • Patent number: 9216065
    Abstract: Apparatus and methods are described including acquiring a plurality of image frames of a portion of a subject's body. At least one of the image frames is designated as a baseline image frame, a shape of the portion in the first baseline image frame being designated as a baseline shape. A non-baseline-shape image frame is deformed, such that the shape of the portion becomes more similar to the baseline shape of the portion than when the portion in the non-baseline-shape image frame is not deformed. A composite image is formed that is of higher clarity with respect to anatomy of the portion, relative to each of the acquired image frames, by averaging at least the deformed non-baseline-shape image frame with the baseline image frame. The composite image is displayed on a display. Other applications are also described.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: December 22, 2015
    Assignee: SYNC-RX, LTD.
    Inventors: Ran Cohen, Zohar Barzelay, Eldad Klaiman, Alexander Steinberg
  • Patent number: 9211104
    Abstract: A method is disclosed for selecting two contrast agents to be used in a dual energy CT examination of a patient. In at least one embodiment, the method includes determining the gradient of a connecting line between a first material or a first tissue type and a second material or second tissue type in an HU value diagram of the energy-specific HU values, selecting a first contrast agent with an enhancement gradient which is significantly greater than the determined base gradient, and selecting a second contrast agent, the enhancement of which lies in the significance region of the determined base gradient. A contrast agent combination selected in the fashion is also disclosed in at least one embodiment, as well as the generation of CT images using a contrast agent combination selected in the fashion and using different energy spectra.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: December 15, 2015
    Assignee: BAYER INTELLECTUAL PROPERTY GMBH
    Inventors: Bernhard Krauβ, Hubertus Pietsch
  • Patent number: 9211163
    Abstract: Method and apparatus for the evacuation of intracerebral hematomas comprises a minimally invasive non-operating room surgical apparatus within a neuro-navigation system that can provide real-time imaging of the ICH evacuation procedure. Apparatus uses an auger housed within an apertured lumen which, when placed in proximity to a hematoma and rotated in an appropriate direction, causes the removal of the clotty material from the hematoma. Apparatus also includes ultrasonic imaging capability and an electromagnetic tracking coil to enable real-time, three-dimensional visualization of the evacuation procedure.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: December 15, 2015
    Inventors: Branislav Jaramaz, Michael Y. Oh
  • Patent number: 9201130
    Abstract: An MRI apparatus which images a subject in such that body fluid that flows is emphasized over background tissues, includes a first coil control device that causes a transmission coil and a gradient coil to execute a first pulse sequence for causing longitudinal magnetization components of the background tissues to differ from a longitudinal magnetization component of the body fluid, a second coil control device that causes the transmission coil and the gradient coil to execute a second pulse sequence that inverts the longitudinal magnetization components of the body fluid and the background tissues a plurality of times after the execution of the first pulse sequence, and a third coil control device that causes the transmission coil and the gradient coil to execute a third pulse sequence for acquiring each MR signal of the body fluid after the execution of the second pulse sequence.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: December 1, 2015
    Assignee: General Electric Company
    Inventor: Mitsuharu Miyoshi
  • Patent number: 9198635
    Abstract: High intensity ultrasound (HIU) is used to facilitate surgical procedures, such as a laparoscopic partial nephrectomy, with minimal bleeding. An apparatus is configured to emit HIU from one or more transducers that are attached to a minimally invasive surgical instrument. Such a tool preferably can provide sufficient clamping pressure to collapse blood vessels' walls, so that they will be sealed by the application of the HIU, and by the resulting thermal ablation and tissue cauterization. Such an instrument can provide feedback to the user that the lesion is completely transmural and that blood flow to the region distal of the line of thermal ablation has ceased. Similar instruments having opposed arms can be configured for use in conventional surgical applications as well. Instruments can be implemented with transducers on only one arm, and an ultrasound reflective material disposed on the other arm.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: December 1, 2015
    Assignee: University of Washington
    Inventors: Lawrence A. Crum, Peter J. Kaczkowski, Stuart B. Mitchell, Michael R. Bailey
  • Patent number: 9198579
    Abstract: A medical examination device used for the detection of pre-cancerous and cancerous tissue has an illumination source, a visualization unit, a contacting optical probe, a detector and a process unit. One embodiment of the apparatus includes both a non-contacting macroscopic viewing device (the visualization unit) for visualizing an interior surface of the cervix, as well as a fiber optic wand (contacting optical probe) for spectrally analyzing a microscopic view of the tissue.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: December 1, 2015
    Assignee: Remicalm, LLC
    Inventor: Andres Felipe Zuluaga
  • Patent number: 9192304
    Abstract: A filter for detecting changes in skin color. The filter includes a filter material capable of filtering a frequency range and configured to orthogonalize an overall red response and an overall blue response in response to a spectral power distribution of a given light condition. The overall red response is based on a first plurality of spectral responses for a first human perceived chromatic channel used primarily for detecting blood oxygenation in a human. The overall blue response is based on a second plurality of spectral responses for a second human perceived chromatic channel used primarily for detecting blood volume.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: November 24, 2015
    Inventors: Timothy P. Barber, Mark Changizi
  • Patent number: 9186123
    Abstract: Ultrasound scanners with anisotropic heat distributors and associated methods of operation are disclosed herein. In one embodiment, an ultrasound scanner can include a housing having a surface enclosing an internal cavity, an electronic component in the internal cavity of the housing, and a heat distributor between the surface of the housing and the electronic component. The heat distributor is in thermal communication with both the electronic component and the surface of the housing. The heat distributor includes a laminated structure having a conductive layer and a insulative layer stacked one on the other.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: November 17, 2015
    Assignee: FUJIFILM SonoSite, Inc.
    Inventors: Paul Dunham, Dustin Green, Thomas Houck
  • Patent number: 9186125
    Abstract: A plurality of strain gauges defined by gauge endpoints are set in each time phase using motion vector information of tissue, and a three-dimensional strain gauge image in which each strain gauge is disposed at a three-dimensional position corresponding to, for example, an ultrasonic image in each time phase is generated and displayed. Moreover, an MPR image is set on volume data and is displayed in a predetermined form in a state where gauge coordinates are projected thereon.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: November 17, 2015
    Assignees: KABUSHIKI KAISHA TOSHIBA, Toshiba Medical Systems Corporation
    Inventors: Yasuhiko Abe, Tetsuya Kawagishi
  • Patent number: 9179844
    Abstract: A handheld skin monitoring or measuring device includes a camera having a camera optical axis; and a structured light arrangement configured to project three or more laser fan beams such that the laser fan beams cross at a crossing point in front of the camera.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: November 10, 2015
    Assignee: ARANZ HEALTHCARE LIMITED
    Inventors: William Richard Fright, Brent Stephen Robinson, Shane Robert Goodwin, Bruce Clinton McCallum, Philip John Barclay
  • Patent number: 9179859
    Abstract: One object of the present invention is to perform compartmental analysis of the dynamics of a tracer in the brain, and the present invention provides a compartmental analysis system including a measurement apparatus that measures the strength of an electromagnetic wave from a tracer and a compartmental analyzer that performs compartmental analysis of the dynamics of the tracer in the brain on the basis of the strength of the electromagnetic wave, wherein the compartmental analyzer includes a rate constant calculation unit that calculates a rate constant when the tracer moves between compartments on the basis of the strength of an electromagnetic wave in a first compartment corresponding to the cerebral blood vessel in the brain or an input function in the first compartment, the strength of an electromagnetic wave in a second compartment corresponding to the brain tissue in the brain, and the strength of an electromagnetic wave in a third compartment corresponding to the cerebral sulcus or cerebral ventricle i
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: November 10, 2015
    Assignee: TAIYO NIPPON SANSO CORPORATION
    Inventors: Akihiko Maeda, Takashi Kambe, Takeshi Ochi
  • Patent number: 9179894
    Abstract: There is provided an ultrasonic diagnosis apparatus capable of reducing an unnecessary signal component in a reception signal. A sign data array formed of a plurality of sign data items arranged in an element arranging direction is extracted from a plurality of element reception signals having been subjected to delay processing but having not been subjected to summing processing. A factor computing unit computes a first factor indicating a level of sign coherence in the sign data array and a second factor indicating a sign transit density in the sign data array. The factor computing unit then computes a factor (evaluation value) for adjusting gain of the reception signal, based on the first factor and the second factor.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: November 10, 2015
    Assignee: HITACHI ALOKA MEDICAL, LTD.
    Inventors: Shingo Yoshizawa, Masanori Hisatsu
  • Patent number: 9177543
    Abstract: An asymmetric ultrasound transducer array may include multiple regions or groups of transducer elements. The regions may be configured to generate respective ultrasound beams with different capabilities, such as, e.g., focusing at varying focal depths and lateral steering, and/or focusing into different volumes.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: November 3, 2015
    Assignee: InSightec Ltd.
    Inventors: Shuki Vitek, Kobi Vortman
  • Patent number: 9173636
    Abstract: An ultrasound probe including: an ultrasound transmission/reception portion; a cable; a housing; a hole portion of the housing; an insulation pipe having a proximal end side exposed outside the housing; an insulation tube covering an outer circumference of an exposed region of the insulation pipe and an outer circumference of the cable; an adhesive located between the outer circumference of the exposed region and a distal end side region of the insulation tube and configured to adhere the insulation pipe and the insulation tube to each other; and a sticky member disposed between the exposed region and the distal end side region together with the adhesive.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: November 3, 2015
    Assignee: OLYMPUS CORPORATION
    Inventor: Kei Irie