Patents Examined by Valarie Bertoglio
  • Patent number: 8815589
    Abstract: The present disclosure provides methods of generating neural stem cells from differentiated somatic cells. The present disclosure also provides induced neural stem cells generated using a subject method, as well as differentiated cells generated from a subject induced neural stem cell. A subject neural stem cell, as well as differentiated cells derived from a subject neural stem cell, is useful in various applications, which are also provided in the present disclosure.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: August 26, 2014
    Assignee: The J. David Gladstone Institutes
    Inventors: Yadong Huang, Karen Ring
  • Patent number: 8815598
    Abstract: The present inventors discovered that genes could be introduced specifically into trophectodermal cells with high efficiency, by infecting blastocysts with viral vectors carrying an arbitrary polynucleotide, or by using a nucleic acid transfection reagent in blastocysts, from which zona pellucida (extracellular matrix covering preimplantation early embryos to protect them from infection of viruses and the like) is removed. This method has no risk of infecting cells of the inner cell mass, which develops into a fetus in the future, with the introduced polynucleotide because the trophectoderm serves as a barrier. The present invention provides methods for introducing foreign genes into only placenta but not fetus, which enables rescue of genetically mutant animals from embryonic lethality due to placental abnormality and allows their birth. Furthermore, it is possible to analyze expression and effect of genes that regulate placental formation or placental function by using these methods.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: August 26, 2014
    Assignees: Fuso Pharmaceutical Industries, Ltd.
    Inventors: Masaru Okabe, Masahito Ikawa
  • Patent number: 8785187
    Abstract: A homogenous, symmetrically dividing population of adherent neural stem cells is obtained from ES cells or foetal or adult brain isolates, using an activator of a signalling pathway downstream of a receptor of the EGF receptor family, optionally in combination with an activator of a signalling pathway downstream of an FGF receptor. The neural stem cell population is highly pure and retains the ability to differentiate into neurons after in excess of 100 passages.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: July 22, 2014
    Assignee: The University Court of the University of Edinburgh
    Inventors: Luciano Conti, Steven Michael Pollard, Austin Gerard Smith
  • Patent number: 8785189
    Abstract: This invention relates to the culture of dendritic cells from human embryonic stem (ES) cells. Human ES cells are first cultured into hematopoietic cells by co-culture with stromal cells. The cells now differentiated into the hematopoietic lineage are then cultured with GM-CSF to create a culture of myeloid precursor cells. Culture of the myeloid precursor cells with the cytokines GM-CSF and IL-4 causes functional dendritic cells to be generated. The dendritic cells have a unique phenotype, as indicated by their combination of cell surface markers.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: July 22, 2014
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Igor I. Slukvin, James A. Thomson, Maksym A. Vodyanyk, Maryna E. Gumenyuk
  • Patent number: 8765169
    Abstract: The present invention relates to compositions and methods for tissue regeneration, particularly for treating skin lesions such as wounds. In one aspect, the invention provides wound healing composition characterized by the higher expression levels of phenotypic marker genes such as apolipoprotein D, matrix metalloprotease (2), collagen 3a1 and smooth muscle actin than the housekeeping gene ribosomal protein L32. The compositions and methods of the invention are useful especially for assisting the process of wound healing, particularly chronic open lesions that are slow to heal or resistant to healing.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: July 1, 2014
    Assignee: Smith & Nephew, Inc.
    Inventors: Paul Kemp, Györgyi Talas, Jennifer Sutherland, Margaret Batten, Penelope Ann Johnson, Andrew Shering, Michael McWhan
  • Patent number: 8753887
    Abstract: The present invention relates to the use of a female germinal cell (egg) extract of pluricellular organisms in M-phase of the cell cycle for a mitotic remodeling of chromosomes of donor cells of pluricellular organisms, wherein the mitotic remodeling confers to the nucleus of the donor cells the ability to adapt themselves to the early embryonic development, in particular to the replication phases, in order to carry out the embryonic development or to obtain stem cells.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: June 17, 2014
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Marcel Mechali, Jean-Marc Lemaitre
  • Patent number: 8748178
    Abstract: Methods are provided for producing a human embryo capable of developing to the blastocyst stage. The method includes transferring a human somatic cell genome into a mature human oocyte by nuclear transfer and activating the oocyte, without removing the oocyte genome. Pluripotent human embryonic stem cells, and methods of obtaining these, are also provided.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: June 10, 2014
    Assignee: The New York Stem Cell Foundation
    Inventors: Dietrich M. Egli, Scott A. Noggle, Kevin C. Eggan
  • Patent number: 8741644
    Abstract: The present invention relates to a method for producing human mast cells from human pluripotent stem cells. More particularly, the present invention provides a method for producing human mast cells from human pluripotent stem cells, comprising the steps of: (a) culturing human pluripotent stem cells under a condition suitable for promoting differentiation of the human pluripotent stem cells into hematopoietic progenitor cells expressing CD34; and (b) culturing the cells obtained in step (a) in the presence of hematopoietic factors comprising thrombopoietin (TPO) and Flt3 ligand.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: June 3, 2014
    Assignee: Kyoto University
    Inventors: Tatsutoshi Nakahata, Kohichiro Tsuji, Feng Ma
  • Patent number: 8741648
    Abstract: Methods and compositions relating to the production of induced pluripotent stem cells (iPS cells) are disclosed. For example, induced pluripotent stem cells may be generated from CD34+ hematopoietic cells, such as human CD34+ blood progenitor cells, or T cells. Various iPS cell lines are also provided. In certain embodiments, the invention provides novel induced pluripotent stem cells with a genome comprising genetic rearrangement of T cell receptors.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: June 3, 2014
    Assignee: Cellular Dynamics International, Inc.
    Inventors: Deepika Rajesh, Amanda Mack
  • Patent number: 8741649
    Abstract: The disclosure provides methods for increasing genome stability of an embryonic stem (ES) cell or induced pluripotent stem (iPS) cell, increasing telomere length in an ES or iPS cell, or both, for example by contacting an ES or iPS cell with an agent that increases expression of Zscan4 in the cell. Methods for increasing the genome stability in a population of ES or iPS cells, increasing telomere length in a population of ES or iPS cells, or both, are provided, for example by selecting Zscan4+ ES or iPS cells from the population of ES or iPS cells (which can include both Zscan4+ and Zscan4? ES or iPS cells). Therapeutic methods of using ES or iPS cells expressing Zscan4 are also provided. Further provided are methods of treating cancer by administering a Zscan4 polynucleotide or Zscan4 polypeptide. Also provided are methods of inducing differentiation of isolated ES or iPS cells into germ cells.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: June 3, 2014
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Minoru S. H. Ko, Michal Zalzman, Lioudmila V. Sharova
  • Patent number: 8728814
    Abstract: Disclosed is an agent for improving at least one activity selected from the group consisting of the growth activity, adhesion activity and extension activity of mesenchymal stem cells, which comprises laminin-5 as an active ingredient. A method of culturing mesenchymal stem cells; a method of isolating mesenchymal stem cells; and a medium, vessel or sheet for use in culturing mesenchymal stem cells are also provided.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: May 20, 2014
    Assignee: Oriental Yeast Co., Ltd.
    Inventors: Kaoru Miyazaki, Junko Hashimoto, Yoshinobu Kariya
  • Patent number: 8722016
    Abstract: Methods of identifying a xenohormetic induced phenotype in an organism are provided. Also provided are methods if using organisms having a known xenohormetically induced phenotype in a number of different applications, such as the identification of xenohormetic agents and the generation of chemical entities and foodstuffs under specific conditions of production governed by xenohormetic effects.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: May 13, 2014
    Assignee: Palo Alto Investors
    Inventor: Joonkyoo Anthony Yun
  • Patent number: 8710294
    Abstract: This invention provides a biological selective breeding technique in preparation of a transparent zebrafish, Citrine. The appearance of Citrine is transparent and yellowish, with uniformly pigmented black eyes and its inner organs are observable by eyes. The invention also provides a method for in vivo observation of progression and expansion of various disease stages or physiological processes.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: April 29, 2014
    Assignee: National Tsing Hua University
    Inventors: Wei-Chang Huang, Yung-Jen Chuang
  • Patent number: 8709805
    Abstract: Provided are a method of producing canine iPS cells, comprising (a) the step of bringing into contact with each other a canine somatic cell and a nuclear reprogramming factor, and (b) the step of culturing the cell in a medium containing at least one substance selected from the group consisting of a mitogen-activated protein kinase kinase inhibitor, an activin receptor-like kinase inhibitor, a glycogen synthase kinase inhibitor, a L-type calcium channel agonist and a DNA methylation inhibitor, and a leukemia inhibitory factor, and canine iPS cells that can be obtained by the method.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: April 29, 2014
    Assignee: Kyoto University
    Inventors: Tatsuo Nakamura, Hidenori Shimada
  • Patent number: 8697851
    Abstract: Targeting constructs and methods of using them are provided for differentiation-dependent modification of nucleic acid sequences in cells and in non-human animals. Targeting constructs comprising a promoter operably linked to a recombinase are provided, wherein the promoter drives transcription of the recombinase in an differentiated cell but not an undifferentiated cell. Promoters include Blimp1, Prm1, Gata6, Gata4, Igf2, Lhx2, Lhx5, and Pax3. Targeting constructs with a cassette flanked on both sides by recombinase sites can be removed using a recombinase gene operably linked to a 3?-UTR that comprises a recognition site for an miRNA that is transcribed in undifferentiated cells but not in differentiated cells. The constructs may be included in targeting vectors, and can be used to automatically modify or excise a selection cassette from an ES cell, a non-human embryo, or a non-human animal.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: April 15, 2014
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, David Jonathan Heslin, Ka-Man Venus Lai, David M. Valenzuela
  • Patent number: 8697402
    Abstract: The invention provides methods of manufacturing biodiesel and other oil-based compounds using glycerol and combinations of glycerol and other feedstocks as an energy source in fermentation of oil-bearing microorganisms. Methods disclosed herein include processes for manufacturing high nutrition edible oils from non-food feedstock materials such as waste products from industrial waste transesterification processes. Also included are methods of increasing oil yields by temporally separating glycerol and other feedstocks during cultivation processes. Also provided herein are oil-bearing microbes containing exogenous oil production genes and methods of cultivating such microbes on glycerol and other feedstocks.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: April 15, 2014
    Assignee: Solazyme, Inc.
    Inventors: Donald E. Trimbur, Chung-Soon Im, Harrison F. Dillon, Anthony G. Day, Scott Franklin, Anna Coragliotti
  • Patent number: 8685386
    Abstract: Aspects of the present invention include methods and compositions related to the production, identification and use of embryonic progenitor cell lines that are capable of undergoing chondrogenesis. A number of exemplary chondrogenic cell lines derived from primordial stem cells are disclosed. The chondrogenic cell lines described herein are robust, can expand for >40 passages, and have site-specific purity, thus providing for compositions and methods of producing diverse cartilage types with unique molecular compositions for use in research and therapy.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: April 1, 2014
    Assignee: BioTime, Inc
    Inventors: Michael D. West, Hal Sternberg, Karen B. Chapman
  • Patent number: 8658352
    Abstract: The present invention relates to cell culture methods and compositions that are essentially serum-free and comprise a basal salt nutrient solution and an ErbB3 ligand.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: February 25, 2014
    Assignee: ViaCyte, Inc.
    Inventors: Allan J. Robins, Thomas C. Schulz
  • Patent number: 8658778
    Abstract: Promoters that include a tissue-selective promoter sequence and a second promoter sequence operatively coupled to the tissue-selective promoter sequence, wherein the second promoter sequence includes a minimal viral promoter sequence, are disclosed. Nucleic acids and compositions that include these promoter sequences are also disclosed. Also disclosed are methods of improving the function of a tissue-selective promoter, involving operatively coupling a tissue-selective promoter sequence with a second promoter sequence that includes a minimal viral promoter sequence. Also disclosed are methods of delivering a gene into a cell, methods of treating a subject with a hyperproliferative disease, and methods of imaging a cell that involve use of the novel promoter sequences set forth herein.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: February 25, 2014
    Assignee: Board of Regents, The University of Texas System
    Inventors: Lin X. Ji, Bingliang Fang, Jack A. Roth
  • Patent number: 8653046
    Abstract: The invention relates to the use of a skin permeating compound such as phloretin for controlling transgene expression under control of the Pseudomonas putida DOT-T1E-derived bacterial repressor TtgR, to a vector comprising the genetic code for the repressor TtgR fused to a transactivation or a transrepressor domain, to a vector comprising a TtgR-specific operator sequence (OTtgR), a promoter and a polynucleotide coding for an endogenous or exogenous protein, and to a mammalian cell transiently or constitutively transfected with the mentioned vectors, and to mammals comprising such cells in nano- or microcontainers.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: February 18, 2014
    Assignee: ETH Zurich
    Inventors: Martin Fussenegger, Marc Gitzinger