Patents Examined by Vanessa A Luk
  • Patent number: 8956565
    Abstract: The invention provides a flake graphite cast iron being highly strong and excellent in workability such as cutting performance, which is suitable for use, for example, in internal combustion engine parts and the like, and a production method thereof without using a misch metal. Specifically, the flake graphite cast iron according to the invention includes an A-type graphite with a uniformly and disorderly distributed existence form without directionality; and has a chemical composition containing 2.8 to 4.0 mass % of C, 1.2 to 3.0 mass % of Si, 1.1 to 3.0 mass % of Mn, 0.01 to 0.6 mass % of P, 0.01 to 0.30 mass % of S and the remainder being Fe and inevitable impurities, wherein the ratio (Mn/S) of the Mn content to the S content is within a range of 3 to 300.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: February 17, 2015
    Assignees: Incorporated National University Iwate University, Nippon Piston Ring Co., Ltd.
    Inventors: Hiroshi Horie, Toshinori Kowata, Yoshiki Ishikawa
  • Patent number: 8936751
    Abstract: A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: January 20, 2015
    Inventor: Robert G. Lee
  • Patent number: 8926772
    Abstract: The invention relates to a hot rolled sheet which is made from austenitic iron/carbon/manganese steel and which has a resistance of greater than 900 MPa, whereby: resistance (MPa) x elongation at rupture (%) is greater than 45000. The chemical composition of the inventive sheet comprises the following concentrations expressed as weight: 0.5%=C=0.7%, 17%=Mn=24%, Si=3%, Al=0.05%, S=0.03%, P=0.08%, N=0.1% and, optionally, one or more elements such as Cr=1%, Mo=0.4%, Ni=1%, Ti=0.5%, Nb=0.5%, V=0.5%, Cu=5%, Cu=5%, the rest of the composition comprising iron and impurities resulting from production. According to the invention, the recrystallised fraction of the steel is greater than 75% and the surface fraction of precipitated carbides of the steel is less than 1.5%, the average grain size of the steel being less than 18 micrometers.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: January 6, 2015
    Assignee: Usinor
    Inventors: Mohamed Bouzekri, Michel Faral, Colin Scott
  • Patent number: 8920713
    Abstract: A steel for a welded structure includes the following composition: by mass %, C at a C content [C] of 0.010 to 0.065%; Si at a Si content [Si] of 0.05 to 0.20%; Mn at a Mn content [Mn] of 1.52 to 2.70%; Ni at a Ni content [Ni] of 0.10% to 1.50%; Ti at a Ti content [Ti] of 0.005 to 0.015%; O at an O content [O] of 0.0010 to 0.0045%; N at a N content [N] of 0.002 to 0.006%; Mg at a Mg content [Mg] of 0.0003 to 0.003%; Ca at a Ca content [Ca] of 0.0003 to 0.003%; and the balance composed of Fe and unavoidable impurities. A steel component parameter PCTOD is 0.065% or less, and a steel component hardness parameter CeqH is 0.235% or less.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: December 30, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Yoshiyuki Watanabe, Kazuhiro Fukunaga, Akihiko Kojima, Ryuji Uemori, Rikio Chijiiwa
  • Patent number: 8894778
    Abstract: The present invention relates to a mechanical part, which is obtained by: processing a steel into a shape of a part, the steel having an alloy composition containing, by weight percent, C: 0.10 to 0.30%, Si: 0.50 to 3.00%, Mn: 0.30 to 3.00%, P: 0.030% or less, S: 0.030% or less, Cu: 0.01 to 1.00%, Ni: 0.01 to 3.00%, Cr: 0.20 to 1.00%, Al: 0.20% or less, N: 0.05% or less, and the remainder of Fe and inevitable impurities, and the alloy composition satisfying the following condition: [Si %]+[Ni %]+[Cu %]?[Cr %]>0.50, in which [Si %], [Ni %], [Cu %] and [Cr %] represent the concentration of Si, the concentration of Ni, the concentration of Cu and the concentration of Cr in the alloy composition, respectively; subjecting the steel to a carburizing treatment in a vacuum, followed by gradually cooling the steel; and subsequently subjecting the steel to a high-frequency hardening to thereby harden a surface of the steel.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: November 25, 2014
    Assignees: Daido Tokushuko Kabushiki Kaisha, Aisin Aw Co., Ltd.
    Inventors: Toshiyuki Morita, Kouji Ohbayashi, Masaki Kuwabara, Taro Matsukawa, Yutaka Eto, Kohki Mizuno
  • Patent number: 8889065
    Abstract: An improved sintered material and product. A nanometer size reinforcement powder is mixed with a micron size titanium or titanium alloy powder. After the reinforcement powder is generally uniformly dispersed, the powder mixture is compacted and sintered, causing the nano reinforcement to react with the titanium or titanium alloy, producing a composite material containing nano and micron size precipitates that are uniformly distributed throughout the material.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: November 18, 2014
    Assignee: IAP Research, Inc.
    Inventors: Bhanumathi Chelluri, Edward Arlen Knoth, Edward John Schumaker, Ryan D. Evans, James. L. Maloney, III
  • Patent number: 8876992
    Abstract: A process for manufacturing a turbine engine component comprises the steps of: casting ingots made of a gamma TiAl material using a double vacuum arc remelting casting technique; subjecting the cast ingots to a hot isostatic pressing to close porosity; forming at least one pancake of the gamma TiAl material by isothermally forging the hot isostatic pressed ingots; sectioning each pancake into a plurality of blanks; heat treating the blanks to produce a desired microstructure and mechanical properties; and machining the blanks into finished turbine engine components. A system for performing the process is also disclosed.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: November 4, 2014
    Assignee: United Technologies Corporation
    Inventor: Gopal Das
  • Patent number: 8865060
    Abstract: An austenitic stainless steel, which consists of by mass percent, C: not more than 0.02%, Si: not more than 1.5%, Mn: not more than 2%, Cr: 17 to 25%, Ni: 9 to 13%, Cu: more than 0.26% not more than 4%, N: 0.06 to 0.35%, sol. Al: 0.008 to 0.03%. One or more elements selected from Nb, Ti, V, TA, Hf, and Zr in controlled amounts can be included with the balance being Fe and impurities. P, S, Sn, As, Zn, Pb and Sb among the impurities are controlled as P: 0.006 to 0.04%, S: 0.0004 to 0.03%, Sn: 0.001 to 0.1%, As: not more than 0.01%, Zn: not more than 0.01%, Pb: not more than 0.01% and Sb: not more than 0.01%. The amounts of S, P, Sn, As, Zn, Pb and Sb and the amounts of Nb, Ta, Zr, Hf, and Ti are further controlled using formulas.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: October 21, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Takahiro Osuki, Kazuhiro Ogawa, Hiroyuki Hirata, Yoshitaka Nishiyama
  • Patent number: 8864922
    Abstract: A method for manufacturing a precipitation hardening cold-rolled steel sheet with an excellent yield ratio. The method may include the steps of hot rolling a steel slab with finish rolling at a temperature of Ar3 transformation point or more to form a hot-rolled steel sheet, coiling the hot-rolled steel sheet at a temperature of 550-600 ° C., cold rolling the hot-rolled steel sheet at a reduction ratio of 50% or more; and recovery-recrystallization annealing the cold-rolled steel sheet at a line speed of 150-200 mpm and at a temperature of 780-820° C. in a continuous annealing furnace. The recovery-recrystallization annealing may provide a recrystallization ratio of 65-75%. The steel slab includes, by weight %: C: 0.07-0.10%, Mn: 1.41-1.70%, P: 0.05-0.07%, S: 0.005% or less, N: 0.005% or less, acid-soluble Al: 0.10-0.15%, Nb: 0.06-0.09%, B: 0.0008-0.0012%, Sb: 0.02-0.06%, and the balance comprising Fe and other unavoidable impurities.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: October 21, 2014
    Assignee: POSCO
    Inventor: Sang-Ho Han
  • Patent number: 8852499
    Abstract: The invention concerns a nanocrystalline alloy of the formula: Fe3?xAl1+xMyTz wherein: M represents at least one catalytic specie selected from the group consisting of Ru, Ir, Pd, Pt, Rh, Os, Re, Ag and Ni; T represents at least one element selected from the group consisting of Mo, Co, Cr, V, Cu, Zn, Nb, W, Zr, Y, Mn, Cd, Si, B, C, O, N, P, F, S, Cl and Na; x is a number larger than ?1 and smaller than or equal to +1 y is a number larger than 0 and smaller or equal to +1 z is a number ranging between 0 and +1 The invention also concerns the use of this alloy in a nanocrystalline form or not for the fabrication of electrodes which in particular, can be used for the synthesis of sodium chlorate.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: October 7, 2014
    Assignees: Hydro-Québec, Meeir Technologie Inc.
    Inventors: Robert Schulz, Sylvio Savoie
  • Patent number: 8828153
    Abstract: A high-strength cold-rolled steel sheet providing a product with a good surface condition after press forming, having excellent bake hardenability and anti room temperature aging property, and having a dual phase structure with a tensile strength of at least 340 MPa is provided. A high-strength cold-rolled steel sheet has a structure comprising a main phase which is a ferrite and a secondary phase which is a low temperature transformation product including a martensite and has a hardness distribution of the ferrite phase in an arbitrary cross section having a length of 10 mm in the widthwise 10 direction of the sheet which satisfies the relationship prescribed by (HV(max)?HV(ave))<0.5×(Hv(ave). HV(max) is the maximum Vickers hardness of ferrite grains in a region at a distance of from (?)t to (¼)t in the thickness direction from the surface when the thickness of the high-strength cold-rolled steel sheet is t, and Hv(ave) is the average Vickers hardness of ferrite grains in this region.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: September 9, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Jun Haga, Nobusato Kojima
  • Patent number: 8815024
    Abstract: The present invention provides steel plate or steel pipe with small occurrence of the Bauschinger effect and methods of production of the same, particularly steel pipe used for steel pipe for oil wells or line pipe with a small drop in the compression strength in the circumferential direction due to the Bauschinger effect when expanded and methods of production of the same, that is steel plate or steel pipe with small occurrence of the Bauschinger effect characterized by having a dual-phase structure substantially comprising a ferrite structure and fine martensite which is dispersed in the ferrite structure. Further, this steel plate or steel pipe contains, by mass %, C: 0.03 to 0.30%, Si: 0.01 to 0.8%, Mn: 0.3 to 2.5%, P: 0.03% or less, S: 0.01% or less, Al: 0.001 to 0.01%, and N: 0.01% or less and a balance of iron and unavoidable impurities.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: August 26, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hitoshi Asahi, Eiji Tsuru
  • Patent number: 8815025
    Abstract: A high strength steel, including about 0.05 to about 0.25% of C, less than about 0.5% of Si, about 0.5 to about 3.0% of Mn, not more than about 0.06% of P, not more than about 0.01% of S, about 0.50 to about 3.0% of Sol. Al, not more than about 0.02% of N, about 0.1 to about 0.8% of Mo, about 0.02 to about 0.40% of Ti, and the balance of iron and unavoidable impurities, wherein the steel has a structure formed of at least three phases including a bainite phase, and a retained austenite phase in addition to a ferrite phase having a composite carbide containing Ti and Mo dispersed and precipitated therein, wherein the total volume of the ferrite phase and the bainite phase is not smaller than 80%, the volume of the bainite phase is about 5% to about 60%, and the volume of the retained austenite phase is about 3 to about 20%.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: August 26, 2014
    Assignees: JFE Steel Corporation, ThyssenKrupp Steel AG
    Inventors: Takeshi Yokota, Akio Kobayashi, Kazuhiro Seto, Yoshihiro Hosoya, Thomas Heller, Brigitte Hammer, Rolf Bode, Günter Stich
  • Patent number: 8808472
    Abstract: A steel alloy suitable for holders and holder details for plastic molding tools contains in weight-%: 0.06-0.15 C, 0.07-0.22 N, wherein the total amount of C+N shall satisfy the condition, 0.16?C+N?0.26, 0.1-1.0 Si, 0.1-2.0 Mn, 12.5-14.5 Cr, 0.8-2.5 Ni, 0.1 1.5 Mo, optionally vanadium up to max. 0.7 V, optionally, in order to improve the machinability of the steel, one or more of the elements S, Ca and O in amounts up to max. 0.25 S, max. 0.01 (100 ppm) Ca, max. 0.01 (100 ppm) O, balance iron and unavoidable impurities.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: August 19, 2014
    Assignee: Uddeholms AB
    Inventors: Odd Sandberg, Magnus Tidesten
  • Patent number: 8801828
    Abstract: A powder metal material comprises pre-alloyed iron-based powder including carbon present in an amount of 0.25 to 1.50% by weight of the pre-alloyed iron-based powder. Graphite is admixed in an amount of 0.25 to 1.50% by weight of the powder metal material. The admixed graphite includes particles finer than 200 mesh in an amount greater than 90.0% by weight of the admixed graphite. Molybdenum disulfide is admixed in an amount of 0.1 to 4.0% by weight of the powder metal material, copper is admixed in an amount of 1.0 to 5.0% by weight of the powder metal material, and the material is free of phosphorous. The powder metal material is then compacted and sintered at a temperature of 1030 to 1150° C. At least 50% of the admixed graphite of the starting powder metal material remains as free graphite after sintering.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: August 12, 2014
    Assignee: Federal-Mogul Corporation
    Inventors: Denis Boyd Christopherson, Jr., Leslie John Farthing, Jeremy Raymond Koth
  • Patent number: 8778098
    Abstract: A method for producing high strength aluminum alloy powder containing L12 intermetallic dispersoids uses high pressure gas atomization to effect cooling rates in excess of 103° C./second.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: July 15, 2014
    Assignee: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Patent number: 8764876
    Abstract: PCBN material consisting essentially of cubic boron nitride (cBN) grains and binder material, the content of the cBN grains being at least 80 weight percent of the PCBN material; the binder material comprising greater than 50 weight percent Al and a combined content of at least 5 weight percent of an iron group element and a refractory element, the iron group element selected from the group consisting of Co, Fe, Ni and Mn, and the refractory element selected from the group consisting of W, Cr, V, Mo, Ta, Ti, Hf and Zr.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: July 1, 2014
    Assignee: Element Six Limited
    Inventor: Stefan Magnus Olof Persson
  • Patent number: 8747578
    Abstract: A steel having excellent formability, fatigue endurance after quenching, low temperature toughness, resistance for hydrogen embrittlement, and corrosion fatigue endurance. A method includes heating a steel slab at 1160° C. to 1320° C., hot-finish-rolling the steel slab at a finisher delivery temperature of 750° C. to 980° C., and then coiling the hot-rolled steel at a coiling temperature of 560° C. to 740° C. after slow cooling for a time of 2 seconds or more to produce a hot-rolled steel strip having a structure in which the ferrite grain diameter df corresponding to a circle is 1.1 ?m to less than 1.2 ?m and the ferrite volume fraction Vf is 30% to 98%, the steel slab containing 0.18 to 0.29% of C, 0.06 to 0.45% of Si, 0.91 to 1.85% of Mn, 0.019% or less of P, 0.0029% or less of S, 0.015 to 0.075% of sol. Al, 0.0049% or less of N, 0.0049% or less of O, 0.0001 to 0.0029% of B, 0.001 to 0.019% of Nb, 0.001 to 0.029% of Ti, 0.001 to 0.195% of Cr, and 0.001 to 0.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: June 10, 2014
    Assignees: JFE Steel Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Shunsuke Toyoda, Kei Sakata, Akio Sato, Kouichi Kaneko, Hiroshi Kawaguchi
  • Patent number: 8747574
    Abstract: Provided is a maraging steel strip which has such a composition that can reduce the content of TiN acting as the starting point of fatigue fracture in a high-cycle region, and the bending fatigue strength of which has been improved by the precipitation hardening effect yielded by precipitating coherent nitrides in the nitrided structure. A maraging steel strip produced by nitriding a managing steel which contains by mass, C: 0.01% or less, Si: 0.1% or less, Mn: 0.1% or less, P: 0.01% or less, S: 0.005% or less, Ni: 8.0 to 22.0%, Cr: 0.1 to 8.0%, Mo: 2.0 to 10.0%, Co: 2.0 to 20.0%, Ti: 0.1% or less, Al: 2.5% or less, N: 0.03% or less, and O: 0.005% or less, with the balance being Fe and unavoidable impurities, wherein Baker-Nutting orientation relationship with an orientation difference within 10° exists between the Cr nitride precipitated in the nitrided layer and the matrix martensite.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: June 10, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventors: Katsuhiko Ohishi, Toshihiro Uehara
  • Patent number: 8734598
    Abstract: There is provided an aluminum surface treatment process, comprising: preparing an aluminum material containing silicon and magnesium; and plasma nitriding the aluminum material to form an aluminum nitride region on a surface of the aluminum material.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: May 27, 2014
    Assignee: Jatco Ltd
    Inventors: Fumiya Yakabe, Yoshio Jimbo, Kanji Ueno, Hideyuki Kuwahara