Patents Examined by Vani Gupta
  • Patent number: 7699781
    Abstract: A system for ultrasonic imaging utilizing multiple sets of transmit pulses differing in amplitude, frequency, phase, and/or pulse width. One embodiment has phase differences between the k transmit signal as 360 k ? ? degrees providing for constructive interference of the kth order harmonic pulse, while an amplitude modulation of each transmit profile is constant between sets. These sets of pulses are transmitted into media of interest and received echoes from these pulses are combined to form an averaged signal. The averaged pulses represent the net common mode signal received from each of the transmit sets. This combined signal set is used to reconstruct an ultrasound image based on broad beam reconstruction methodology.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: April 20, 2010
    Assignee: ZONARE Medical Systems, Inc.
    Inventors: Glen McLaughlin, Ting-Lan Ji
  • Patent number: 7695443
    Abstract: The invention relates to a device for generating shock waves for medical therapy comprising two electrodes of a spark discharge section, wherein the device is filled with a liquid medium, and wherein the liquid medium comprises a colloidal suspension of a conducting, semiconducting, or polarizable substance in water.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: April 13, 2010
    Assignee: Tissue Regeneration Technologies, LLC
    Inventor: Axel Voss
  • Patent number: 7684846
    Abstract: A transmission wave field imaging method, comprising the transmission of an incident wave field into an object, the incident wave field propagating into the object and, at least, partially scattering. Also includes the measuring of a wave field transmitted, at least in part, through an object to obtain a measured wave field, the measured wave field based, in part, on the incident wave field and the object. Additionally, the processing of the measured wave field utilizing a recursive reconstruction algorithm to generate an image data set representing at least one image of the object.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: March 23, 2010
    Assignee: Techniscan, Inc
    Inventors: Steven A. Johnson, David T. Borup, James Wiskin, Michael J. Berggren
  • Patent number: 7640051
    Abstract: CAD (computer-aided diagnosis) systems and applications for breast imaging are provided, which implement methods to automatically extract and analyze features from a collection of patient information (including image data and/or non-image data) of a subject patient, to provide decision support for various aspects of physician workflow including, for example, automated diagnosis of breast cancer other automated decision support functions that enable decision support for, e.g., screening and staging for breast cancer. The CAD systems implement machine-learning techniques that use a set of training data obtained (learned) from a database of labeled patient cases in one or more relevant clinical domains and/or expert interpretations of such data to enable the CAD systems to “learn” to analyze patient data and make proper diagnostic assessments and decisions for assisting physician workflow.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: December 29, 2009
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Sriram Krishnan, R. Bharat Rao, Murat Dundar, Glenn Fung
  • Patent number: 7616985
    Abstract: The present invention provides systems and methods for obtaining a three-dimensional (3D) representation of one or more light sources inside a sample, such as a mammal. Mammalian tissue is a turbid medium, meaning that photons are both absorbed and scattered as they propagate through tissue. In the case where scattering is large compared with absorption, such as red to near-infrared light passing through tissue, the transport of light within the sample is described by diffusion theory. Using imaging data and computer-implemented photon diffusion models, embodiments of the present invention produce a 3D representation of the light sources inside a sample, such as a 3D location, size, and brightness of such light sources.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: November 10, 2009
    Assignee: Xenogen Corporation
    Inventors: Daniel G. Stearns, Bradley W. Rice, Michael D. Cable
  • Patent number: 7611467
    Abstract: A method and apparatus for extracting an envelope curve of a spectrogram, for use in measurement of blood flow velocity by using spectral Doppler techniques, the method comprising steps of: processing RF ultrasound echo signals to obtain Doppler signals; performing spectral analysis on the Doppler signals, to obtain a corresponding power spectrum P(f); estimating a forward maximum frequency fmax+ and a backward maximum frequency fmax? for the Doppler signals at a predetermined moment, according to the power spectrum P(f) of the Doppler signals at the predetermined moment; determining a noise frequency range according to the two maximum frequencies, so as to estimate an average noise power E; and correcting the forward maximum frequency and the backward maximum frequency by using the average noise power E. With the method of the invention, influence from the SNR and bandwidth on the envelope curve may be reduced, so as to be useful for accurate computation of blood flow parameters.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: November 3, 2009
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    Inventor: Yu Zhang
  • Patent number: 7603167
    Abstract: The present invention provides systems and methods for obtaining a three-dimensional (3D) representation of one or more light sources inside a sample, such as a mammal. Mammalian tissue is a turbid medium, meaning that photons are both absorbed and scattered as they propagate through tissue. In the case where scattering is large compared with absorption, such as red to near-infrared light passing through tissue, the transport of light within the sample is described by diffusion theory. Using imaging data and computer-implemented photon diffusion models, embodiments of the present invention produce a 3D representation of the light sources inside a sample, such as a 3D location, size, and brightness of such light sources.
    Type: Grant
    Filed: July 29, 2007
    Date of Patent: October 13, 2009
    Assignee: Xenogen Corporation
    Inventors: Daniel G. Stearns, Bradley W. Rice, Michael D. Cable
  • Patent number: 7599731
    Abstract: Described herein are systems and methods for obtaining a three-dimensional (3D) representation of the distribution of fluorescent probes inside a sample, such as a mammal. Using a) fluorescent light emission data from one or more images, b) a surface representation of the mammal, and c) computer-implemented photon propagation models, the systems and methods produce a 3D representation of the fluorescent probe distribution in the mammal. The distribution may indicate—in 3D—the location, size, and/or brightness or concentration of one or more fluorescent probes in the mammal.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: October 6, 2009
    Assignee: Xenogen Corporation
    Inventors: Bradley W. Rice, Chaincy Kuo, Daniel G. Stearns, Heng Xu
  • Patent number: 7596401
    Abstract: A method for expanding the domain of imaging software in a diagnostic work-up includes the steps of: imaging a patient's body parts for a first condition using a first imaging technique directed to a first condition; acquiring known patient risk factors indicating a second condition; compensating for differences in accuracy between a first imaging technique directed to a first condition, and a second imaging technique directed to testing for the second condition to generate a set of measures; placing a range and confidence interval around the set of measures; and evaluating for a second condition using the set of measures and known patient risk factors.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: September 29, 2009
    Assignee: Cornell Research Foundation, Inc.
    Inventors: David F. Yankelevitz, Anthony P. Reeves, Claudia Ingrid Henschke
  • Patent number: 7591787
    Abstract: A method of measuring blood flow including several steps. In an initial step a first ultrasound beam is oriented in a direction substantially perpendicular to the direction of the blood flow to be measured. Next, the Doppler spectrum obtained from the backscattered echoes of said first ultrasound beam is measured. Subsequently, the ultrasound beam is reoriented so that the Doppler spectrum of the backscattered echoes of the ultrasound beam is substantially symmetrical around the zero frequency. The Doppler frequency of the backscattered echoes of a second ultrasound beam oriented at a fixed angle to the first ultrasound beam is then measured. Finally, the rate of blood flow is calculated based on the angle between the ultrasound beams and the measured Doppler frequency of the backscattered echoes of the second ultrasound beam.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: September 22, 2009
    Inventor: Piero Tortoli
  • Patent number: 7555332
    Abstract: Described herein are systems and methods for obtaining a three-dimensional (3D) representation of the distribution of fluorescent probes inside a sample, such as a mammal. Using a) fluorescent light emission data from one or more images, b) a surface representation of the mammal, and c) computer-implemented photon propagation models, the systems and methods produce a 3D representation of the fluorescent probe distribution in the mammal. The distribution may indicate—in 3D—the location, size, and/or brightness or concentration of one or more fluorescent probes in the mammal.
    Type: Grant
    Filed: July 29, 2007
    Date of Patent: June 30, 2009
    Assignee: Xenogen Corporation
    Inventors: Bradley W. Rice, Chaincy Kuo, Daniel G. Stearns, Heng Xu
  • Patent number: 7542792
    Abstract: A method and apparatus for imaging a patient is provided. The method includes receiving patient information, automatically selecting an imaging protocol based on the received information, and performing an imaging scan of the patient using the automatically selected imaging protocol.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: June 2, 2009
    Assignee: General Electric Company
    Inventors: Scott David Wollenweber, Charles William Stearns, Diane Marie Miesbauer
  • Patent number: 7519414
    Abstract: In an image post-processing method and apparatus for 3D visualization of 2D/3D fused image data for use in catheter angiography in an endovascular interventional procedure, upon forward movement of a micro-catheter through blood vessel in the interventional procedure, x-ray images are acquired from different projection directions and are subjected to a pattern recognition algorithm for edge-based segmentation of the image regions filled by the micro-catheter, with all remaining image regions being masked out. The segmented projection exposures are prepared by a 3D reconstruction algorithm to obtain an image data set for (pseudo-) three-dimensional representation of the micro-catheter. This image data set are intraoperatively registered and fused with an image data set acquired from an angiographic pre-examination for three-dimensional visualization of the vessel topography.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: April 14, 2009
    Assignee: Siemens Aktiengesellschaft
    Inventors: Matthias Mitschke, Norbert Rahn, Dieter Ritter, Michael Scheuering