Patents Examined by Vikkram Bali
  • Patent number: 10319098
    Abstract: A system for processing video signal information to identify those pixels associated with a moving object in the presence of platform and/or sensor pointing induced motion. Frame differencing with self-adjusting noise thresholds is implemented to detect pixels associated with objects that are in motion with respect to the background and a field-by-field motion pixel map of pixels associated with the moving object is generated. A two (2) step pixel grouping process is used where the first pass runs in real-time as the video signal is received and writes the links between pixel groups into entries in a table. The second pass operates on a smaller set of link data and only needs to reorder entries in the table.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: June 11, 2019
    Assignee: Raytheon Company
    Inventors: Stephen R. Nash, Christopher A. Leddy, Hector A. Quevedo
  • Patent number: 10307139
    Abstract: Exemplary system, method and computer-accessible medium for determining a difference(s) between two sets of subjects, can be provided. Using such exemplary system, method and computer-accessible medium, it is possible to receive first imaging information related to a first set of subjects of the two sets of the subjects, receive second imaging information related to a second set of subjects of the two sets of subjects, generate third information by performing a decomposition procedure(s) on the first imaging information and the second information, and determine the difference(s) based on the third information.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: June 4, 2019
    Assignee: NEW YORK UNIVERSITY
    Inventors: Fernando Boada, Steven Baete, Jingyun Chen, Ricardo Otazo
  • Patent number: 10311566
    Abstract: Methods and systems for automatically determining image characteristics serving as a basis for a diagnosis associated with an image study type. One system includes a server including an electronic processor and an interface for communicating with at least one data source. The electronic processor is configured to receive an image study from the at least one data source over the interface. The image study being of the image study type and including a plurality of images. The electronic processor is also configured to determine an image characteristic for each of the plurality of images and determine whether each of the plurality of images was used to establish a diagnosis. The electronic processor is also configured to store the image characteristic for each of the plurality of images and an indicator of whether each of the plurality of images was used to establish the diagnosis in a data structure.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: June 4, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Murray A. Reicher, Jon T. DeVries, Michael W. Ferro, Marwan Sati
  • Patent number: 10275876
    Abstract: Methods and systems for automatically selecting an implant for a patient. One system includes a server including an electronic processor and an interface for communicating with at least one data source. The electronic processor is configured to receive at least one image of the patient from the data source over the interface. The electronic processor is also configured to receive an intended location of the implant with reference to the at least one image. The electronic processor is also configured to automatically determine an anatomical structure based on the at least one image. The electronic processor is also configured to determine a preference. The electronic processor is also configured to automatically select one or more suggested implants based on the intended location, the anatomical structure, and the preference. The electronic processor is also configured to display the one or more suggested implants through a graphical user interface.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: April 30, 2019
    Assignee: International Business Machines Corporation
    Inventors: Murray A. Reicher, Jon T. DeVries, Michael W. Ferro, Marwan Sati
  • Patent number: 10275893
    Abstract: Method for visual tracking of at least one object represented by a cluster of points with which information is associated, characterised in that it includes steps to: receive (E1) data representing a set of space-time events, determine (E2) the probability that an event in the set belongs to the cluster of points representing the at least one object, for each event in the received set, determine (E3) whether or not an event belongs to the cluster of points as a function of the determined probability for the event considered, for each event in the received set, update (E4) information associated with the cluster of points for at least one object, for each event for which it was determined in the previous step that it belongs to the cluster of points, calculate (E4, E5) the position, size and orientation of the at least one object as a function of the updated information.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: April 30, 2019
    Assignees: SORBONNE UNIVERSITE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Stéphane Regnier, Ryad Benosman, Cécile Pacoret, Ieng Siohoi, Ni Zhenjiang
  • Patent number: 10251708
    Abstract: A method of generating a 4D model includes capturing imagery of a catheter and a vessel as the catheter is directed through the vessel to a location of interest, wherein the catheter is disposed on a guidewire, constructing a 3D time varying reference curve describing a trajectory of the guidewire, and constructing a time varying 3D model of the artery using the reference curve.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: April 9, 2019
    Assignee: International Business Machines Corporation
    Inventors: Julia S. Baldauf, Darcy J. Beurle, Matthew Downton, Kerry Halupka, Stephen M. Moore, Christine Schieber
  • Patent number: 10255483
    Abstract: Embodiments directed towards systems and methods for tracking a human face present within a video stream are described herein. In some embodiments, the exemplary illustrative methods and the exemplary illustrative systems of the present invention are specifically configured to process image data to identify and align the presence of a face in a particular frame.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: April 9, 2019
    Assignee: Banuba Limited
    Inventors: Yury Hushchyn, Aliaksei Sakolski, Alexander Poplavsky
  • Patent number: 10249063
    Abstract: A method of reconstructing a 3-dimensional image in a proton transmission computerized tomography (CT) apparatus is disclosed. The method comprises the creation of a reconstruction matrix. The matrix is created by directing a plurality of particles to traverse the object; and for each particle, measuring the trajectory and energy of each particle before and after it has traversed the object; for each particle, calculating the water-equivalent path length within the object; and for each particle, calculating the positions at which it entered and exited the object; and adding the water-equivalent path length, entry and exit positions to the reconstruction matrix. This procedure is repeated from a plurality of angular positions surrounding an object to be imaged. Then, a spatially varying 2-dimensional filter function is applied to the reconstruction matrix. Subsequently, a correction factor is applied to the filtered reconstruction matrix to at least partially correct for the finite extent of the matrix.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: April 2, 2019
    Assignee: University of Lincoln
    Inventors: Nigel Allinson, Phil Evans, Gavin Poludniowski
  • Patent number: 10242440
    Abstract: Systems and methods for generating corrected emission tomography images are provided. A method includes obtaining a reconstructed image based on emission tomography data of a head of a patient and defining a boundary region in the reconstructed image estimating a position of a skull of the patient in the reconstructed image. The method also includes generating a map of attenuation coefficient values for the reconstructed image based on the boundary region. The reconstructed image can then be adjusted based on the map. In the method, the attenuation coefficient values within the boundary region are selected to correspond to an attenuation coefficient value for bone and the attenuation coefficient values for the portion of the image surrounded by the boundary region are selected to correspond to an attenuation value for tissue.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: March 26, 2019
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Alexander Hans Vija, Xinhong Ding
  • Patent number: 10242288
    Abstract: Various aspects of a system and method for video processing is disclosed herein. The system comprises a video processing device that is configured to generate a spatial saliency map based on spatial information associated with a current frame of a video stream. A spatio-temporal saliency map is generated based on at least motion information associated with the current frame and a previous frame of the video stream. Based on a weighted combination of the generated spatial saliency map and the generated spatio-temporal saliency map, a combined saliency map is generated.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: March 26, 2019
    Assignee: SONY CORPORATION
    Inventor: Pingshan Li
  • Patent number: 10241180
    Abstract: Described here are systems and methods for producing an image that depicts blood flow stasis using magnetic resonance imaging (MRI), Doppler echocardiography, or other medical instruments for measuring flow velocities in a human body. A time series of three-dimensional (3D) image volumes is provided, where this time series of 3D image volumes contains flow velocity information at voxel locations in a 3D volume in a subject. One or more regions-of-interest are then segmented from the 3D image volumes. For each voxel in the regions-of-interest, velocity magnitudes are calculated. Using the velocity magnitudes, a flow stasis volume is produced by computing a relative stasis value for each voxel location in the corresponding region-of-interest. This flow stasis volume can be provided as a 3D flow stasis image, or a flow stasis map can be produced by projecting the flow stasis volume onto a two-dimensional (2D) plane.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: March 26, 2019
    Assignee: Northwestern University
    Inventors: Michael Markl, Jeffrey J. Goldberger
  • Patent number: 10231531
    Abstract: A method, system and device for determining the properties of hair and skin. The method, system and device facilities the selection and application of an application of a product to the hair or skin of an individual to achieve a desired target result. The hair or skin properties measured may include the hair composition and chemical components of the hair, as well as substances that may coat the hair, and other substances on, absorbed or absorbed on or into the hair. A hyper-spectral imaging component is employed to obtain information from the hair or skin and that information is used to provide a produce used to produce the target result.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: March 19, 2019
    Assignee: Colorculture Network, LLC
    Inventors: David J. Witchell, Erlend Olson
  • Patent number: 10229329
    Abstract: Systems, methods, and apparatus for identifying and tracking UAVs including a plurality of sensors operatively connected over a network to a configuration of software and/or hardware. Generally, the plurality of sensors monitors a particular environment and transmits the sensor data to the configuration of software and/or hardware. The data from each individual sensor can be directed towards a process configured to best determine if a UAV is present or approaching the monitored environment. The system generally allows for a detected UAV to be tracked, which may allow for the system or a user of the system to predict how the UAV will continue to behave over time. The sensor information as well as the results generated from the systems and methods may be stored in one or more databases in order to improve the continued identifying and tracking of UAVs.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: March 12, 2019
    Assignee: DEDRONE HOLDINGS, INC.
    Inventors: Rene Seeber, Ingo Seebach, Henning Meyer, Markus Schoeler, Kai Baumgart, Christian Scheibe, David Prantl
  • Patent number: 10229497
    Abstract: According to one embodiment, at least a portion of medical information of a patient is displayed within MRCS executed within a local device, the medical information including medical treatment history of the patient. At least a portion of the displayed medical information of the patient is transmitted to a medical imaging processing server over a network, where the transmitted medical information includes a patient identifier (ID) of the patient. Both the at least a portion of patient medical information and one or more medical images are displayed within the MRCS, where the medical images are associated with the patient and rendered by the medical image processing server. A set of icons representing a set of image processing tools is displayed within the MRCS, which when activated by a user, allow an image to be manipulated by the imaging processing server.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: March 12, 2019
    Assignee: TeraRecon, Inc.
    Inventors: Robert James Taylor, Tiecheng Zhao, Tim Frandsen
  • Patent number: 10198817
    Abstract: A technology which enables identifying, via a computer, a vessel in a third image. The third image is obtained from a subtraction of a second image from a first image. The second image and the first image are aligned on an imaging space. The first image is post-contrast. The second image is pre-contrast. The technology enables determining, via the computer, a voxel intensity mean value of a segment of the vessel in the third image. The technology enables obtaining, via the computer, a fourth image from a division of the third image by the voxel intensity mean value. The technology enables applying, via the computer, a filter onto the fourth image. The technology enables generating, via the computer, a filter mask based on the fourth image.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: February 5, 2019
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Scott A. Small, Frank A. Provenzano, Usman A. Khan
  • Patent number: 10192303
    Abstract: Mixed-mode includes receiving inspection results including one or more images of a selected region of the wafer, the one or more images include one or more wafer die including a set of repeating blocks, the set of repeating blocks a set of repeating cells. In addition, mixed-mode inspection includes adjusting a pixel size of the one or more images to map each cell, block and die to an integer number of pixels. Further, mixed-mode inspection includes comparing a first wafer die to a second wafer die to identify an occurrence of one or more defects in the first or second wafer die, comparing a first block to a second block to identify an occurrence of one or more defects in the first or second blocks and comparing a first cell to a second cell to identify an occurrence of one or more defects in the first or second cells.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: January 29, 2019
    Assignee: KLA Tencor Corporation
    Inventors: Jason Z. Lin, Allen Park, Ellis Chang, Richard Wallingford, Songnian Rong, Chetana Bhaskar
  • Patent number: 10169674
    Abstract: A vehicle type recognition method based on a laser scanner is provided, the method comprising steps of: detecting that a vehicle to be checked has entered into a recognition area; causing a laser scanner to move relative to the vehicle to be checked; scanning the vehicle to be checked using the laser scanner on a basis of columns, and storing and splicing data of each column obtained by scanning to form a three-dimensional image of the vehicle to be checked, wherein a lateral width value is specified for each single column of data; specifying a height difference threshold; and determining a height difference between the height at the lowest position of the vehicle to be checked in data of column N and the height at the lowest position of the vehicle to be checked in data of specified number of columns preceding and/or succeeding to the column N.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: January 1, 2019
    Assignee: NUCTECH COMPANY LIMITED
    Inventors: Shangmin Sun, Yanwei Xu, Qiang Li, Weifeng Yu, Yu Hu
  • Patent number: 10163226
    Abstract: The invention relates to a method for calibrating a camera system (7) of a motor vehicle (1). At least one camera (8-11) respectively sequentially generates camera images (21-28) from an environment (2) of the motor vehicle (1). A computing device (12) generates a virtual view (14) of the environment (2) from a virtual perspective from the camera images (21-28) by means of a projection (P). In traveling, the computing device (12) passes at least once a calibration cycle for each camera (8-11). Based on current projection parameters (30) of the projection (P), therein, camera images (23, 24) of the camera (9) are transformed. Motion vectors are determined from it. For at least one geometric characteristic of the motion vectors, a reference value is set. From a difference between the at least one geometric characteristic of the motion vectors and the respective corresponding reference value, an error value is determined. Depending on the error value, new projection parameters are determined (30).
    Type: Grant
    Filed: November 26, 2015
    Date of Patent: December 25, 2018
    Assignee: Connaught Electronics Ltd.
    Inventor: Pantelis Ermilios
  • Patent number: 10158926
    Abstract: Aspects relate to causing one or more signals to be detectable within a live event such that devices that record at least a portion of the event also record the one or more signals. The signals can be used for later processing and categorization of received recordings in order to associate the recordings with the event. Further actions can be performed based on the association. Such actions include digital rights management, crowd-sourced experiences, and categorization of the event for searching and retrieval purposes.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: December 18, 2018
    Assignee: GOOGLE LLC
    Inventor: Michael Theodor Hoffman
  • Patent number: 10152783
    Abstract: In one embodiment, a method includes obtaining a borehole image deriving from a downhole tool in a wellbore of a geological formation, identifying one or more patches that correspond to sediment particles on the fullbore image, computing one or more characteristics for each of the one or more patches. The one or more characteristics may include long/short axis length, size, roundness, sphericity, orientation, or some combination thereof. The method may also include displaying a visual representation for each of the one or more characteristics.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: December 11, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Shiduo Yang, Isabelle Le Nir, Kang Wang